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Motivated by the amazing illustration 

THE MACHINERY OF LIFE 
David Goodsell A living cell is a collection of 

molecular machines in action



Our interests: Bacterial nonomachines in action
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Rationale: These nanomachines play roles in bacterial pathogenesis
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Our techniques:  

✤High-throughput cryo-ET pipeline 

✤Production of bacterial minicells 

Our systems: 

✤ Injectisomes in bacterial pathogens - Secretion 

✤Phage infection - Trans-envelope channel formation

Outline



Frank: Electron Tomography

Automation is essential for cryoET



Frank: Electron Tomography

Automation is essential for cryoET



In three days: 360 tilt series (41x8 frames);  118,080 2-D images; 
4.0 Tb raw data;  32.0 Tb 3-D Tomograms.

3-D TomogramsSamples
TOMOAUTO

Morado et al. JoVE 2016 Hu et al. PNAS 2015

SerialEM  —> MotionCor2 —> IMOD  —> Tomo3D —> I3

High throughput cryo-electron tomography



200 nm

A typical bacterium is too large for cryo-ET
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Dr. Bill Margolin

Liu	et	al.	Virology	(2011)	
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Our solution: bacterial minicells



Production of minicells

Farley et al., 2016; Carleton  et al., 2013



Production of minicells

Farley et al., 2016; Carleton  et al., 2013



Hu et al. PNAS 2015

Shigella minicells 



Hu et al. PNAS 2015



Bacterial nanomachines (I) 

Bacterial type III secretion systems  
in Shigella & Salmonella 
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Host-Pathogen Interactions



Costa et al, Nat Rev Microbiol 2015
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Bacterial secretion systems
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Type III secretion mediated infection
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Discovery and characterization of Salmonella T3SS-1

Kubori, T. et al. Science 1998  

shocked and examined by transmission
electron microscopy (TEM). Complex
structures resembling a needle (needle com-
plex) were visualized on the cell surface
(Fig. 1, A and B). The base of the structure
is on the plane of the cytoplasmic mem-
brane and extends to the outer membrane,
where it is connected to a thinner structure,
or needle, that projects outward. The dense
layer around the proximal end of the needle
suggests that this complex is attached to the
outer membrane through specialized struc-
tures. A depression on the outer membrane
was often seen in association with the in-
sertion point of the needle complex (Fig.
1B). There were 10 to 100 needle complex-
es per cell, and these complexes were dis-
tinguishable from flagellar basal bodies of
osmotically shocked wild-type S. typhi-
murium cells (Fig. 1D). Although the size of
the base is similar to that of the flagellar
basal body, the needle itself is much thinner
than the flagellar filament. Salmonella typhi-
murium strains carrying mutations in any of
24 different flagellar genes (6) exhibited
needle complexes in their envelopes, fur-
ther demonstrating that these complexes
are independent of flagella (7). In contrast,
needle structures were absent from S. typhi-
murium strains carrying mutations in invG,
prgH, or prgK (Fig. 1C) (7), which encode
essential components of the invasion-asso-
ciated type III secretion system (8, 9).

Needle complexes isolated by a CsCl
density gradient (10) appear to have cylin-
drical symmetry because every particle lying

on the TEM grid exhibited a similar shape
(Fig. 2). The base structure resembles the
flagellar basal body (11) because it contains
two upper (or outer) and two lower (or
inner) rings. The lower rings, which inter-
act with the cytoplasmic membrane, are 40
nm in diameter and 20 nm wide and appear
to be close together. The upper rings are 20
nm in diameter and 18 nm wide and inter-
act with the outer membrane and the pep-
tidoglycan layer. The two upper rings are
more widely separated than the two lower
rings. The outermost ring was sometimes

observed associated with fragments of the
outer membrane, a phenomenon often seen
in the L ring of the flagellar basal body (12)
(Fig. 2C).

The needle structure itself is a stiff,
straight tube, 80 nm long and 13 nm wide.
The line across its length indicates that the
stain solution penetrated into a hollow
space in the center of the structure. Occa-
sionally, needle structures were missing
from the bases (Fig. 2C), in which case the
bases tended to form aggregates through
their rings, a phenomenon often observed

Fig. 1. Electron micrographs of osmotically shocked S. typhimurium strains.
(A and B) Nonflagellated !flhC S. typhimurium exhibits needle complexes on
the bacterial envelope (open arrows). Note the depression at the insertion
point of the needle complex (closed arrow). (C) An invasion-defective strain of
S. typhimurium carrying a mutation in invG shows no evidence of needle
complexes. (D) An S. typhimurium fliK mutant exhibits flagellar polyhook

basal bodies that span the inner and outer membranes. TEM samples were
prepared as in (20). Samples were negatively stained with 2% phosphotung-
stic acid (pH 7.0) and observed under a JEM-1200EXII transmission electron
microscope (JEOL, Tokyo). Micrographs were taken at an accelerating volt-
age of 80 kV. Scale bar, 100 nm.

Fig. 2. Needle complexes isolated from S. typhimurium !flhC. (A and B) Complexes obtained from an
enriched fraction of the CsCl density gradient (10). (C) ( Top) Needle complexes associated with the
bacterial outer membrane through their outer rings. (Bottom) Needle complexes lacking the needle
structure aggregating through their outer rings. Scale bar, 100 nm.
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Schraidt & Marlovits Science 2011 



Near-atomic-resolution structure 


Worrall et al., Nature 2016
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Hu et al. PNAS 2015



Hodgkinson et al 2009, Schraidt et al. 2011, Kudryashev et al. 2013 Hu et al. PNAS 2015

Intact T3SS revealed in Shigella
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Difference between Salmonella and Shigella
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Hu et al. PNAS 2015 
Hu et al. Cell 2017



Molecular architecture of the export apparatus 

Hu et al. Cell 2017



GFP tags on key componentsHu et al. Cell 2017

Structural characterization of the sorting platform 



Hu et al. Cell 2017

Molecular architecture of the T3SS machine in situ 



Type III secretion mediated infection
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SalmonellaHost Cell

Salmonella-host interaction
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Visualizing Salmonella-host interactions

Host Cell Raphael Park



Bacterial Nonamachines (III) 
  

Phage infection 

Novel insights into virus-host interaction 
and transient channel formation
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Dr. Ian Molineux
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& R01GM124378



(Kleinschmidt et al., 1962)

Bacteriophages - Amazing nanomachines
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Extended Data Figure 1 | Sample purification, cryo-EM imaging and 
reconstruction. a, Purification scheme of the T4 baseplate–tail tube 
complexes. b, SDS–PAGE of the sample used in cryo-EM imaging  
(the full gel is shown in Supplementary Fig. 1). c, Raw cryo-EM image of 
T4 baseplates. d, e, Representative reference-free 2D class averages of T4 
baseplates in pre- and post-attachment conformations, respectively. The 
number of particles in each class in d is as follows: 1: 534; 2: 813; 3: 689;  

4: 655; 5: 292; 6: 858; 7: 2,223; 8: 977. The number of particles in each class 
in e is as follows: 1: 315; 2: 68; 3: 494; 4: 60; 5: 263; 6: 387; 7: 62; 8: 566.  
f, g, Distribution of refined angles of the baseplate in both conformations. 
h, Fourier shell correlation (FSC) between independently refined maps 
calculated using half of the data (gold-standard refinement) after post-
processing for both conformations. i, Fragments of the pre-attachment 
baseplate cryo-EM reconstruction map with fitted atomic model.

© 2016 Macmillan Publishers Limited. All rights reserved

Taylor	et	al.,	Nature	2016
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Taylor	et	al.,	Nature	2016
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Lander et al. Science 2006

structure of the isolated P22 portal with the portal
in the virion reconstruction revealed a significant
reorganization during assembly andmaturation of
the virion (Fig. 4C). Part of this apparent change

in conformation may be due to the missing 102
amino acids at the C terminus of the isolated
protein; however, the extensive differences
between the two structures imply that portions

of the portal adopt a different conformation in
the virion than when it is isolated in solution.

Termination ofDNApackagingwhen the P22
head is full implies a pressure sensor that conveys
a signal from within the particle to the exterior,
which initiates a program of cutting the DNA (by
the gp2/gp3 terminase complex), release of gp2
and gp3, and attachment of the other components
of the tail machine (gp4, 10, 9, and 26) to the
portal (Fig. 1). The reconstruction shows that the
portal ring extends from the capsid interior (where
it makes direct contact with packaged DNA) to
the outside (where it must make direct contact
with the DNA gp2/gp3 packaging-terminase
complex, during the DNA filling process). The
structural change of the portal from a Blow-
pressure[ free state to a Bhigh-pressure[ as-
sembled state is consistent with the portal as
the signal transducer of a full head of DNA.
Indeed, Casjens et al. (17) proposed a role for the
portal in headful sensing when they found that
two different single–amino acid changes (near the
N terminus and the middle of the protein) each
caused 2000 extra base pairs to be encapsidated
before the packaged DNA was cleaved from the
remaining concatemeric DNA. Examination of
the intravirion portal shows a tightly wound ring
of dsDNA (resulting from averaging many
particles with different start points for the duplex
spiral into the next ring) surrounding a region of
the portal that has undergone a conformational
change (Fig. 4C) relative to the free form. We
suggest, therefore, that the portal is in the
isolated form within the procapsid as packaging
of the DNA commences. As the DNA continues
to enter and is spooled into the capsid, the
resulting increase in pressure forces DNA to
tighten around the portal. At a critical point in
the packaging process, when the capsid has fully
expanded and with the chromosome at the
headful density, the surrounding ring of DNA
exerts such a force on the portal that it changes
conformation, signaling the packaging motor to
cease and the packaging-terminase complex to
cut the packaged chromosome from the remain-
ing concatemeric DNA. The new portal con-
formation can bind the remaining gene products
that form the tail machinery required for in-
fection. Although it was not discussed in detail,
a similar ring of apparent DNA density was
seen in the asymmetric reconstructions of T7
and epsilon 15 virions (7, 13), suggesting that
such a portal-DNA interaction may be a general
feature of the tailed-phage virions.

Further support for this hypothesis is evidenced
by a comparison of the P22 portal to the crystal
structure of the phage f29 portal. Although it does
not use the headful packaging mechanism, f29
uses a DNA translocase that is similar to other
tailed phages (18). Docking of the f29 portal
crystal structure (15) into the P22 portal density
reveals an exceptionally good fit to the lower
stalk region that extends outside of the particle
and to the lower portion of the wing region that
makes contact with the capsid protein. However,

Fig. 2. Surface volume repre-
sentation of the P22 bacterio-
phage infectious virion at 17 Å
resolution. A three-dimensional
reconstruction of the P22 virion
resulting from the superposition
of 26442 particles is shown with
the same coloring scheme as in
Fig. 1. The T 0 7l organization
(indicated by the yellow lattice
cage) of the coat proteins (blue)
is clearly visible in the recon-
struction without the imposition
of icosahedral symmetry. The tail
machinery, which exhibits 6- and
12-fold symmetry at different
distances from the virion center,
is situated at a single five-fold
vertex of the capsid and replaces
five coat subunits there.

Fig. 3. The interior features of the P22
virion. (A) The locations, deduced from
many previous molecular biological studies,
of the assembled gene products within a
cutaway view of the reconstructed density of
the P22 virion. The same coloring scheme is
used here as in Fig. 1. Gene products 1, 4,
9, 10, and 26 make up the tail machine.
Layers of dsDNA (green) are clearly visible
as concentric shells within the capsid; they
break into distinct rings of density near the
portal vertex. Density (green) in the center
of the channel formed by the ejection
proteins (purple) could be the end of the
P22 chromosome; however, density on this axis within the portal protein ring (red) does not appear
to be consistent with DNA. (B) A cutaway view of the internal portion of the asymmetrically
reconstructed particle contoured at 3 s, showing the 12-fold symmetry of the portal (red), the
putative ejection proteins (purple), and individual strands of dsDNA (green). (C) Close-up view of
the packaged interior upon 12-fold averaging along the tail tube axis. Although the E-proteins
(purple) themselves in reality may or may not exhibit 12-fold symmetry, this view demonstrates the
channel-like nature of the structure they form in the virion, as well as the dsDNA (green) that may
be seated within their channel. Three concentric shells of spooled DNA are clearly visible.

REPORTS
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Simon	et	al.	1967 Dai	et	al.	Nature	2013

Phage infection remains poorly understood



~30 sec ~3 min~3 min~1 min ~10 min

Capturing key intermediates in T4 infection 

Hu	et	al.	PNAS	(2015)
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Formation of a trans-envelope channel
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Conformational change during contraction



Model of the trans-envelope channel



Hu et al. Science 2013

T7 — A short tailed phage
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Hu et al. Science 2013

T7 intermediates during infection
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Chunyan Wang 

Cryo-ET with VPP (reconstruction)



The best is yet to come for cryo-ET
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➢ We develop high-throughput cryo-ET pipeline to visualize 
bacteria and their nanomachines in action.

➢ Bacterial minicell is a great toolbox for in situ structural 
determination of nanomachines.

➢ We determine in situ structures of the T3SS machines in 
Shigella and Salmonella.

➢ We reveal novel trans-envelope channels during phage 
infection.

➢ Classification is essential for sorting key conformations.

Summary
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