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[Methods for backbone tracing into moderate
resolution structures. What are the problems,

how are they approached, what are the
solutions? How do we validate the methods and

the results?]



Single particle cryoEM at near-
atomic resolution
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Goals of structure determination

Determining the position of all the atoms in a structure
Model refinement aims to:

¢ |dentify and correct errors

e Improve fit to data

¢ Improve model geometry

Each atom is described by four parameters:

e cartesian coordinates (x,y,z) & temperature factor (B)
Data/parameter ratio >>1 is sought in X-ray crystallography

Use the structure to infer biological/biochemical properties of the protein
studied



Determining structures using “intermediate”
resolution data requires more “prior knowledge”
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Determining structures using “intermediate”
resolution data requires more “prior knowledge”

Refinement finds atom position minimizing
E(total) = E(geometry) + w-E(data)

Atom connectivity

data

geometry

Resolution: 0.5 A



Determining structures using “intermediate”
resolution data requires more “prior knowledge”

Refinement finds atom position minimizing
E(total) = E(geometry) + w-E(data)
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Determining structures using “intermediate”
resolution data requires more “prior knowledge”

Refinement finds atom position minimizing
E(total) = E(geometry) + w-E(data)

Bond lengths
Bond angles

Sterics =Rosetta
Torsion distributions Energy
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Electrostatics
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Software for model building

UCSF Chimera (rigid-body docking of structures into EM maps)
e Visualizing “overall” cryoEM reconstructions
Coot (rigid-body docking, manual model building, real-space refinement)
e Visualizing “local” segment of cryoEM reconstructions
Refmac (refinement of atomic coordinates)
Phenix (model building “map_to_model” derived from resolve & refinement of atomic coordinates)
Buccaneer (model building)
PathWalker(model building)
DireX (flexible fitting/refinement of atomic coordinates)
MDFF (flexible fitting/refinement of atomic coordinates)

Rosetta (model building & refinement of atomic coordinates)



pipeline

De novo model Homology )
building modeling
Model
completion
refinement ; NG

DiMaio F et al (2015) Nature Methods

Wang RYR et al (2015) Nature Methods
Wang RYR et al (2016) eLIFE ;’
Frenz B et al (2017) Nature Methods
Song Y et al (2013) Structure




Use resolution of high-resolution structures to
extend structure determination at lower resolution
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De novo structure determination

Obtaining a structure with no other information than the
sequence of the protein(s) and a cryoEM reconstruction

Challenging at 3-5 A resolution

Hand tracing is time consuming

Hand tracing is sometimes not possible

Why do crystallographic model building softwares fail?
e Usually work well at resolution <3 A

e Assign sequence primarily using side chain density



The Rosetta de novo building strategy

Take advantage of knowledge-based sequence/structure
information:

Local sequence confers conformational preferences

MYPRQTEINSEQVENCE For 9-residue windows centered at
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The Rosetta de novo building strategy

Use fragment consistency to select correct fragments

Density Correlation Overlap Score

Score
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® Near-native fragments match the density
well and are consistent with one another:

¢ Non-clashing

® Assign the same residue to the same

position

® Nearby residue in sequence are nearby

in cartesian space

e Score function evaluates the consistency

of a set of fragments

e Monte-Carlo sampling finds fragment set

optimizing the score function.

e Works up to 4.8A resolution

Wang RYR et al (2015) Nature Methods



The Rosetta de novo building strategy
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A
' Walls AC et al (2017) PNAS

Lexi Walls



The Rosetta de novo building strategy

¢ |n placement: long fragments do not necessarily capture
structure accurately in regions of high local variation

g % high variability

¢ |n rebuilding: sampling long segments requires all the residues
to be correct in order to see an energy signal

low variability

REBR



Rosetta enumerative sampling (RosettakS)

e Use shorter fragments for more accuracy in variable regions while still maintaining
information on sequence preference

e Employ a greedy conformational strategy to handle the large conformational space
e Model completion

e Works with unsegmented density & symmetry

Insert fragments into Score and cluster to Extend the best matches Repeat until all
missing region select best fragments from the previous round residues assigned

-

Brandon Frenz Frenz B et al (2017) Nature Methods



Rosetta enumerative sampling (RosettakS)

e Reduction of search space leads to improvements

e Penalizing density discontinuities

e Explicit modeling of B-sheets

e Rotamer-like density matching

5 "/1 -~ a
Frenz B et al (2017) Nature Methods /I T g



Rosetta enumerative sampling (RosettakS)

Map sharpening vs RMSD
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Frenz B et al (2017) Nature Methods



osetta enumerative sampling (RosettakS)

Frenz B et al (2017) Nature Methods
Zhang X et al (eLIFE2013)



Rosetta enumerative sampllng (RosettaES)
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Rosetta glycan refinement
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Brandon Frenz

3 HCOV-NL63 78 N-linked glycans
102 N-linked glycans

Alex Xiong

| < N~ Automated glycan detection
A== Refinement using stereochemical restraints
Q‘J (chair conformation)

Walls AC et al (2016) Nature Struct Mol Biol
Xiong X et al (2017) J Virol
Frenz B et al, unpublished
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correspondence

Carbohydrate anomalies in the PDB

To the Editor: The importance of
carbohydrates both to fundamental cellular
biology and as integral parts of therapeutics
(including antibodies) continues to grow. The
presence of the correct glycans is important
for the beneficial effects of therapeutic
glycoproteins and is likely to be increasingly
required by regulatory agencies. However,
carbohydrates (and other small molecules) are
handled poorly in macromolecular structural
biology. When such small molecules are
present in macromolecule structures, they are
often reported with stereo- and regiochemical
errors and in unlikely conformations. Stereo-
and regiochemistry should always be correct,
and although conformational distoftions may
reflect interactions taking place in a complex’,
most are also likely to be erroneous—resulting
from poor chemical understanding and lack
of appropriate stereochemical restraints in
refinement, often against low-resolution data’.
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Figure 1| Distribution of b-pyranoside ring conformations as a function of resolution for all N-linked
sugars (at distance <2.0 A) in the PDB as of January 2015, identified by their Chemical Component
Dictionary IDs: NAG, NDG, MAN, BMA, BGC, GLC, GAL and GLA. E/H, envelopes and half-chairs; B/S,
boats and skew-boats; wavy lines denote the main ring plane. For clarity, an envelope is depicted at

6 = 45° and a half-chair at 6 = 135°, and skew-boat is omitted from the equator.
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Rosetta glycan refinement
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Rosetta comparative modeling (RosettaCM)

e Structure(s) sharing sequence similarity to the target structure
e Partial structures
® Multiple structures

® Fragments predicted using local sequence

¢ Tuning of the frequency with which the two sources of information are used

¢ Also allows model completion when 70% built model available (although RosettaES
outperforms RosettaCM in most cases)

¢ Song Y et al (2013) Structure
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Rosetta comparative modeling (Rosgtta
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4.2A resolution S4-85
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Non-Swapped Architecture
S4-S5

James ZM, Borst AJ et al (2017) PNAS |
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Rosett comparative modeling (RosettaCM)

Ca rmsd

A

Deleted disordered loops between
transmembrane helices
&
Truncated residue to Cf in the C-terminal
CNBD due to dampened resolution

James ZM, Borst AJ et al (2017) PNAS



Rosetta density-guided iterative refinement

e Fragments predicted using local sequence
® Size can be tuned: the longer the fragment, the more divergence is allowed
e Targets:
¢ Regions with conformational strains and poor fit to density

¢ Random segments of the chain(s)

No violations

Bond lengths

e User-defined regions Bond angies
Dihedral_angles
Sidechain rotamer outliers

CB deviations

e 100-1000 models

Ramachandran angles

¢ Produces atomic-level accuracy models using maps determined at 4.5 A
resolution or better

e |Large radius of convergence
e Voxel size refinement

e B-factor refinement after model completion DiMaio F et al (2015) Nature Methods
Wang RYR et al (2015) Nature Methods
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Computational cost of running Rosetta

e Several hundreds to thousands of trajectories

e One cpul/trajectory

e Selection based on Rosetta energy function and/or map/model FSC
® Run time depends of size of model to be built

e 1.5h for a 30-residue fragment for RosettaES using 16 cores

e 2-4h/model for RosettaCM, Rosetta density-guided iterative refinement (75-120
kDa/protomer applying symmetry)

¢ 15 min/model for Rosetta relax
e Backfill queue
e Makes use of free cpu cycles

e Typical of super-computer centers



Rosetta structure determination pipeline

e Rosetta energy function and conformational sampling are
valuable at bridging the resolution gap between for near-atomic

resolution reconstructions

e Automatic de novo structure determination at 3.5-4.5A is
possible (up to 4.8A!)

e Versatile pipeline



Model building using several maps

e Different subsets of particles (classification)

e Different softwares
A ,
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Cheng Y et al (2015) Nature Methods



Model building using several map

e Different B-factor sharpening

e Or local filtering (sxfilterlocal,

STIV
4.5A resolution

Veesler D et al (2013) PNAS



Which maps should we deposit?

® Recent 3dem/ccpem discussion
e Full map sharpened (current standard)
e Unsharpened map (TRPV1, LIiK...)
e Caveat: end-user needs got know how to sharpen a map
e Half maps

e Mask used for resolution estimation



e http://molprobity.biochem.duke.edu/

Model validation

e The model should be stereochemically sound (Molprobity, Privateer)

Ramachandran statistics
Clashes (steric overlaps)

Distribution of favored rotamers

EMRinger (x1)

100% percentile” (N=744, 1.94A = 0.25A)
Contacts |Clashscore is the number of serious steric overlaps (> 0.4 A) per 1000 atoms.

0.00% Goal: <1%

0.00% Goal: <0.05%

97.42% Goal: >98%

All-Atom Clashscore, all atoms: 1.2

Poor rotamers 0
Ramachandran outliers 0

Ramachandran favored 151
Protein

MolProbity score” 095 100% percentile® (N=11856, 1.94A = 0.25A)
Geometry : .
CpB deviations =0.25A 0 0.00% |Goal: 0
Bad backbonebonds: 0/1288 0.00% |Goal: 0%
Bad backbone angles: 0/1734 0.00% |Goal: <0.1%
All-Atom Clashscore, all atoms: |I35.29 ‘Z"d percentile” (N=37, 3A - 99994)
Contacts Clashscore is the number of serious steric overlaps (> 0.4 A) per 1000 atoms.
Poor rotamers 4681 46.69% ‘Goal: <0.3%
Favored rotamers 3431 34.22% Goal: >98%
Ramachandran outliers 3282 28.73% Goal: <0.05%
Protein Ramachandran favored 4982 43.62% Goal: >98%
Geometry MolProbity score” 4.86 18t percentile” (N=342, 3.50A + 0.25A)
CB deviations >0.25A 9 0.08% Goal: 0
Bad bonds: 7 /94333 0.01% Goal: 0%
Bad angles: 490 /128344 0.38% Goal: <0.1%
Peptide Omegas Cis Prolines: 50/707 7.07% Expected: <1 per chain, or <5%

Chen VB et al (2010) Acta Cryst D
Barad BA et al (2015) Nature Methods
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Model validation

e The model should agree with the density

Campbell MG et al (2015) eLIFE



Model validation

The model should be cross-validated

e Using information that was not used during refinement!

X-ray crystallography: reciprocal space data

e Set aside a few percent of reflections (test set: Rfree)
e Use the rest for model refinement (Rwork)

e Measures agreement between Rwork and Rfree

CryoEM data: real space data

e (old-standard refinement divides dataset in two halves s -

¢ One half used as training (work) map
e QOther half used as testing map (free)

Last iteration uses all the data (minimization only!)

Bru

nger AT (1992) Nature

DiMaio F et al (2013) Protein Science
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Model validation

e At low resolution (3- 5A) any additional source of information is
most welcome! \ |

M: QQ)SJZQW)A\?!ES@Y (+2HexNAc6Hex)

e Glycosylation sites
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e Cross-linking/MS (can be incorporated in RosettaCM)



Model validation

e (Coevolution encodes structural information

* Contacts in proteins are evolutionary conserved and encoded in a multiple
sequence alignment due to coevolution

e By measuring coevolution, one can infer contacts in proteins

Ovchinnikov S et al (2014) eLIFE
Ovchinnikov S et al (2017) Science

Sergey Ovchinnikov David Baker



Protein Protein/protein
structure interaction
prediction prediction

Ovchinnikov S et al (2014) eLIFE
Ovchinnikov S et al (2017) Science



Model validation

Crystal
Prediction ~ structure

Ovchinnikov S et al (2014) eLIFE
Ovchinnikov S et al (2017) Science

e Could provide an additional metric for cross-validation

e Currently restricted to prokaryotic sequences



How to deal with uncertainty in model building

e Poorly ordered regions of a map can be:
¢ Left unmodeled
e Modeled and let B-factor account for it
e Modeled but truncated at Ca or C
e Modeled with an occupancy of 0
e A combination of the above
e Best strategy depends of the situation (de novo vs rebuilding)

® |n any case, write in the manuscript what you have done



Model interpretation

* Model convergence
e Rosetta ES/CM/density-guided iterative refinement
e Mark Herzik & Gabe Lander’s convergence server

e https://doi.org/10.1101/128561

e hitp://www.lander-lab.com/convergence/

* Agreement between local resolution and B-factor analysis

Walls AC et al (2016) Nature Struct Mol Biol


http://www.lander-lab.com/convergence/
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Rosetta enumerative sampling (RosettakS)
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Real-space B-factor refinement. To better model the density
maps and generate more accurate models, we refined atomic
B factors against the maps optimizing the real-space correlation
between model and map. Given that atom 7 has a B factor B;, we
calculate the density of the model as

3

~ 2
. T 2 B T B .2
pe= 2. .[fi+B,~/4] eXp( fi+B,-/4“x x’”]

atoms 1

Here, fis a scattering factor fit to each element. Our implementa-
tion makes use of a single-Gaussian scattering for each atom type,
but it is straightforward to extend this to a standard five-Gaussian
scattering model?’.

B-factor refinement is carried out using quasi-Newton opti-
mization, with the gradient of the B factor of atom i (located at
coordinates x;) given in real space by

ORSCC 1 Bchpo_ ach
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