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Bayesian Methods in Cryo-EM

Bayesian methods already underpin many successful techniques 

• Likelihood methods for refinement/3D classification 

• 2D classification 

May provide a framework to answer some outstanding problems 

• Flexibility 

• Validation 

• CTF estimation 

• Others?



What are Bayesian Methods?

Probabilities are traditionally defined by counting the frequency of 
events over multiple trials. 

• This is the frequentist view 

The Bayesian view is that probabilities provide a numerical 
measure of belief in an outcome or event, even if they are unique. 

• They can be applied to any problem which has uncertainty



Bayesian Probabilities

Do we have to use Bayesian probabilities to represent uncertainty? 

• No, but according to Cox’s Theorem you probably are anyway 

In short: any representation of uncertainty which is consistent with 
boolean logic is equivalent to standard probability theory.

[Richard Cox]



What are Bayesian Methods?

Bayesian methods attempt to capture and maintain uncertainty. 

Consists of two main steps: 

• Modelling: capturing the available knowledge about a set of 
variables 

• Inference: given a model and a set of data, computing the 
distribution of unknown variables of interest



Bayesian Modelling

In modelling use domain knowledge to define the distribution 

•     are parameters we want to know about 

•     is the data that we have 

This is called the posterior distribution 

• Encapsulates all knowledge about      given the prior knowledge 
used to construct the posterior and the data 
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Bayesian Modelling

How do we define the posterior? 

Rev Thomas Bayes wrote a paper answering this 
question: 

This led to the first description of Bayes’ Rule

[Rev. Thomas Bayes]
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P R O B L E M .

Given the number of times in which an unknown 
event has happened and failed: Required the chance 
that the probability of its happening in a Angle trial 
lies fomewhere between any two degrees of pro 
bability that can be named.

S E C T I O N  I.

E F I N I T I O N  i. Several events are in- 
^  confiftent, when if one of them happens, none
of the reft can.

2. Two events are contrary when one, or other of 
them muft ; and both together cannot happen.

3. An event is faid to Jail, when it cannot hap 
pen ; or, which comes to the fame thing, when its con 
trary has happened.

4. An event is faid to be determined when it has 
cither happened or failed.

5. The probability of any event is the ratio between 
the value at which an expectation depending on the 
happening of the event ought to be computed, and 
the value of the thing expected upon it’s happening.

6. By chance I mean the lame as probability.
7. Events are independent when the happening of 

any one of them does neither increase nor abate the 
probability of the reft.

P R O P .  1.

W hen feveral events are inconliftent the probabili 
ty of the happening of one or other of them is the 
lum of the probabilities of each of them.

Suppofe

 on October 28, 2017http://rstl.royalsocietypublishing.org/Downloaded from 

[Philosophical Transactions of the Royal Society, vol 53 (1763)]



Bayes’ Rule

p(⇥|D) =
p(D|⇥)p(⇥)

p(D)

Likelihood Prior

Evidence

Posterior

The posterior consists of 

• the likelihood                

• the prior 

The evidence is determined by the likelihood and the prior

p(D|⇥)

p(⇥)



Bayesian Modelling for Structure Estimation

Consider the problem of estimating a structure from a 
particle stack. 

•                            : stack of particle images 

•           : 3D structure 

A common prior is a Gaussian equivalent to Wiener filter 

• Many other choices possible 

What about the likelihood?

p(D|⇥) =
NY

i=1

p(Ii|V)

p(⇥) = N (V|0,⌃)

⇥ = V

D = {I1, . . . , IN}



Particle Image Likelihood in Cryo-EM

An image    of a 3D density    in a pose 
given by 3D rotation     and 2D offset 
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Particle Image Likelihood in Cryo-EM

Particle pose is unknown

p(I | V)

=

Z

R2

Z

SO(3)
p(I|R, t,V)p(R)p(t)dRdt

What if there are multiple structures?

[Sigworth, J. Struct. Bio. (1998)]

=

Z

R2

Z

SO(3)
p(I,R, t|Vk)dRdt Marginalization



Particle Likelihood with Structural Heterogeneity

If there are K different independent structures and each image is equally 
likely to be of any of the structures

p(I|V1, . . . ,VK) =
1

K

KX

k=1

p(I|Vk)

=
1

K

KX

k=1

Z

R2

Z

SO(3)
p(I|R, t,Vk)p(R)p(t)dRdt

⇥ = {V1, . . . ,VK}



Particle Image Likelihood in Cryo-EM

Computing the marginal likelihood

Requires Numerical 
Approximation

p(I | V)=
Z

R2

Z

SO(3)
p(I|R, t,V)p(R)p(t)dRdt

⇡
X

j

wjp(I|Rj , tj ,V)

Many different approximations: 

• Importance sampling [Brubaker et al. IEEE CVPR (2015); IEEE PAMI (2017)] 

• Numerical quadrature [e.g., Scheres et al, J. Mol. Bio. (2012); RELION, Xmipp, etc] 

• Point approximations [e.g., cryoSPARC; Projection Matching Algorithms]



Approximate Marginalization

Integration over viewing direction

Structure at 10Å Structure at 35Å

High 
Probability

Low 
Probability



Particle Image Likelihood in Cryo-EM

Instead of marginalization can estimate poses 

• Include poses in variables to estimate  

• Likelihood becomes 

• This is equivalent to projection matching approaches/point 
approximations 

• Marginalizing over poses makes inference better behaved (Rao-
Blackwell Theorem)

⇥ = {V,R1, t1, . . . , ,RN , tN}

p(D|⇥) =
NY

i=1

p(Ii|Ri, ti,V)



Bayesian Inference

The posterior                is then used to make inferences 

• What value of the parameters is most likely? 

• What is the average (or expected) value of the parameters?  

• How likely are the parameters to lie in a given range? 

• How much uncertainty in a parameter?  Are multiple parameter 
values are plausible?  Many others… 

• Inference is rarely analytically tractable

p(⇥|D)

argmax

⇥
p(⇥|D)

E[⇥] =

Z
⇥p(⇥|D)d⇥

p(⇥0  ⇥  ⇥1|D) =

Z ⇥1

⇥0

p(⇥|D)d⇥



Bayesian Inference

Two major approaches to inference 

Sampling 

• If posterior uncertainty is needed 

• Almost always requires approximations and very expensive

E[f(⇥)] =

Z
f(⇥)p(⇥|D)d⇥ ⇡ 1

M

MX

j=1

f(⇥j)

⇥j ⇠ p(⇥|D)



Optimization for Bayesian Inference

Optimization often only practical choice for large problems 

Sometimes referred to as the “Poor Mans Bayesian Inference” 

Many different kinds of optimization algorithms 

• Derivative free (brute-force search, simplex, …) 

• Variational methods (expectation maximization, …)  

• Gradient based (gradient descent, BFGS, …)

argmax

⇥
p(⇥|D)

= argmin

⇥
� log p(⇥)p(D|⇥)

= argmin
⇥

O(⇥)



Gradient-based Optimization

Recall from calculus: negative gradient is the direction of fastest 
decrease 
• All gradient-based algorithms  

iterate an equation like: 

Variations include: 
• CG [e.g., CTFFIND, J. Struct. Bio. (2003)] 
• LBFGS [e.g., alignparts, J. Struct. Bio. (2014)] 
• Many others [Nocedal and Wright (2006)]

Gradient of  
Objective Function

⇥(t+1) = ⇥(t) � ✏trO
⇣
⇥(t)

⌘

⇥(t)

⇥(t+1)

�✏trO
⇣
⇥(t)

⌘



Gradient-based Optimization

Problems with gradient-based optimization for structure estimation 

• Large datasets means expensive to compute gradient 

• Sensitive to initial value  

Can we do better? 

• Recall the objective function

⇥(0)

argmin
⇥

O(⇥)

fi(V) = � log p(V)�N log p(Ii|V)

= argmin
V

O(V)

O(V) = 1

N

NX

i=1

fi(V)



Gradient-based Optimization for CryoEM

Lets look at the objective more closely 

Optimization problems like this have been studied under various names 
• M-estimators, risk minimization, non-linear least-squares, … 

One algorithm has recently been particularly successful 
• Stochastic Gradient Descent (SGD) 
• Very successful in training neural nets and elsewhere

O(V) = 1

N

NX

i=1

fi(V)
Average Error 
Over Images



Stochastic Gradient Descent

Consider computing the average of a large list of numbers 
• 2.845, 3.157, 2.033, 3.483, 3.549, 3.031, 2.120, 3.211, 2.453, 3.155, 2.855, … 

Computing the exact answer is expensive 
What if an approximate answer is sufficient? 
• Average a random subset 

SGD applies this intuition to approximate the objective function



Stochastic Gradient Descent

SGD approximates the objective using a random subset of terms

Random 
Subset

O(V) = 1

N

NX

i=1

fi(V)

⇡ 1

|J|
X

i2J

fi(V)

Full Objective

Approximations



Stochastic Gradient Descent

The approximate gradient is then an average over the random subset
rO(V) ⇡ 1

|J|
X

i2J

rfi(V)

V(t)

V (t+1)

⇡ �rO(V(t))

J

Random Subset

V(t)

V (t+1)

ApproximationExact Objective



Ab Initio Structure Determination with SGD

80S Ribosome [Wong et al 2014, EMPIAR-10028]

• 105k 360x360 particle images 
• ~35 minutes



Ab Initio 3D Classification with SGD

T. thermophilus V/A-type ATPase [Schep et al 2016] 
• 120k 256x256 particles from an F20/K2, 
• ~3 hours 

20% 64% 16%



Stochastic Gradient Descent

Computational cost determined by number of samples, not dataset size 
• Surprisingly small numbers of samples can work 
• Only need a direction to move which is “good enough” 

Applicable to any differentiable error function 
• Projection matching, likelihood models, 3D classification, … 

In theory converges to a local minima 
• In practice, often converges to good (global?) minima 
• Not theoretically understood but widely observed 
• Ideally suited to ab initio structure estimation



Conclusions

Bayesian Methods provide a framework for problems with uncertainty 

• Allows us to incorporate domain specific knowledge in a 
principled manner in the form of the likelihood model and priors 

• Limitations of our image processing algorithms can be understood 
as limitations or poor assumptions built into our models  (e.g., 
discrete vs continuous heterogeneity) 

Defining better models is usually easy 

• Inference and good approximations are the hard part 

• No need to reinvent the wheel, many of our problems are well 
trodden ground (e.g., optimization)
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