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Voltage Gun Stage Detector

Negative stain 100/120 kV Thermionic Side entry RT holder CCD

Screening Cryo-EM  
of >300 kDa 100/120 kV Thermionic Side entry cryoholder 

(anticontaminor) CCD

Screening Cryo-
EM of <300 kDa

(100 kV) 
200 kV FEG Side entry cryoholder 

(anticontaminor) DDD

Good resolution 
cryo-EM 200 kV FEG

Side entry cryoholder 
or autoloader-type 

holder
DDD

Best resolution 
cryo-EM 300 kV + FEG

Side entry cryoholder 
or autoloader-type 

holder
DDD

Best resolution 
high-throughput 

cryo-EM
300 kV + FEG autoloader-type holder DDD

Equipment needed for single particle EM



Everything is easier with a Krios! 
(~2014)

2007 to present: Tecnai F20 
(K2 summit 2013)  

2017: Titan Krios with Falcon3 
(Quantum K2/K3??)

Cryo-EM in Toronto



Time needed for each experiment

Negative stain specimen screening

Cryo-EM specimen screening 
and 

preliminary structure determination

High-res 
structure 

determination



Use your FEG/DDD microscope appropriately…

Voltage Stage Obtaining Parallel beam Avoiding lens 
hysterisis

F20 200 kV Side Entry Cryoholder
Use C2 aperture and lens 

setting that minimizes beam 
divergence

Use over-focused 
diffraction for search 

mode

Talos/
Talos 

Arctica/
Glacios

200 kV Side entry holder/
Autoloader

Use C2 aperture and lens 
setting that minimizes beam 

divergence

Constant power 
lenses

F30/Polara 300 kV Side entry holder/
Stable stage

Use C2 aperture and lens 
setting that minimizes beam 

divergence

Use over-focused 
diffraction for search 

mode

Titan Halo 300 kV Side entry holder 3rd Condenser Lens Constant power 
lenses

Titan 
Krios 300 kV Autoloader 3rd Condenser Lens Constant power 

lenses



Must match exposure/defocus at different voltages

100 kV 200 kV 300 kV

100 kV 1 1.5 1.8

200 kV 0.68 1 1.2

300 kV 0.56 0.82 1

100 kV 200 kV 300 kV

100 kV 1 1.47 1.88

200 kV 0.678 1 1.27

300 kV 0.532 0.785 1

New defocus must keep product of λ and Δz constant 
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Voltage at which 
exposure wanted

Voltage at which 
defocus wanted

Equivalent exposure calculator Equivalent defocus calculator

Based on linear energy transfers from Glaeser (2007)
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Decision Relevant concepts

Magnification or pixel size (Å/pixel) DQE, Nyquist Limit, Aliasing, Anisotropic 
magnification

Exposure rate (electrons/pixel/second) Coincidence loss (counting)

Frame rate (frames/sec) Alignability of frames, movement within 
frames, radiation damage per frame

Movie length (seconds) Total signal at different resolutions

Decisions you need to make with a DDD 

frame (Gatan) = fractions (FEI)



Fourier basics
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Two dimension Fourier transforms

• The FT of real functions (e.g. images) are Hermitian: for every point (a+bi) 
there is a corresponding point (a-bi) 

• For an N ⨉ N pixel image, Fourier transform is N/2+1 ⨉ N

a

a+bi

a-bi

c

Image array (real value pixels)



Representing waves as vectors

phase (Φ)

wavelength (λ)

amplitude (|F|)

• Wavelength
• Amplitude
• Phase
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F=a+bi

s

N

=

vuut 1

N

NX

i=1

(x

i

� x̄) (1)

resolution(k

x

) =

pixelsize · FTsize

radius

(2)

radius(✓) =

r1 + r2 + cos (2 · (✓ � ✓

off

)) (r1 � r2)

2

(3)

F

shifted

= F

unshifted

(cos�+ i sin�) (4)

� = k

x

(j) ·�x

2⇡

N

+ k

y

(j) ·�y

2⇡

N

(5)

where �x and �y are the x and y shifts, respectively.

N is the extent in pixels in both the x and y direction of the N ⇥N image.

k

x

(j) and k

y

(j) are the distance of the Fourier component from the origin in the k

x

and k

y

directions, respectively.

F (x)� F (x+ ✏)

✏

⇡ @F (x)

@x

(6)

i =

p
�1 (7)

1



The FT represents functions in terms of waves

Function
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Shifting waves causes a phase change



Phase change of Fourier components from shifting

Shifting in real space causes phase changes in Fourier space
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Two dimension Fourier transforms
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Position of pixel determines  
sine wave frequency and direction



Detective quantum efficiency
(What pixel size/magnification should you use?)



McMullan et al. (2014), Ultramicroscopy 147, 156-63.
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DQE(res’n)=

Detective quantum efficiency



McMullan et al. (2009), Ultramicroscopy 109, 1144-7.

Electron counting can boost DQE



Integration

Electron counting

1

1

1

1

Counting

Counting electrons normalizes the signal from each electron on the sensor



Aliasing



Sampling

To capture signal of frequency ‘f’, must sample at 2f (e.g. 1 Å pixels allows 2 Å resolution)
‘Nyquist frequency’

Nyquist frequency and aliasing

This ‘critical sampling’ can also miss signals

Sampling of signals that are higher-frequency than Nyquist produces lower-frequent power 
‘Aliasing’
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Effect of aliasing on spectral power



In reality, pixelated detector don’t sample analogue signal but integrate over pixel

Aliasing for real electron sensors

Aliasing limits DQE of perfect detector to (2/π)2



Avoiding the effects of Aliasing - approach 1 (K2/K3) 

• Try to localize electron impacts to a corner of a pixel

}Physical pixel size

}Super-res 
pixel
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FT-1

FT

extract 
central 
region

put in 
new 
array

Collect data in “super-resolution mode”

Four ‘super-resolution’ pixels  
per physical pixel

Avoiding the effects of Aliasing - approach 1 (K2/K3) 



McMullan et al. (2014), Ultramicroscopy 147, 156-63.
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Super-resolution signal from K2 summit has super-low DQE 
Don’t try to use super-resolution 
signal for structure determination

Super-resolution data collection 
followed by Fourier truncation 
may help reduce aliasing

Super-resolution data collection 
takes additional time/disc space

Reduced aliasing probably isn’t 
worth the extra time it takes (get 
more particle images instead)

Averaging pixels 2⨉2 after  
super-resolution data collection 
re-aliases image



Avoiding the effects of Aliasing - approach 2 (Falcon3) 

• Acquire a frame with ~1 el/100 pixels



Avoiding the effects of Aliasing - approach 2 (Falcon3) 

• Acquire a frame with ~1 el/100 pixels
• Localize electron to a sub-pixel (corner of a physical pixel)



Avoiding the effects of Aliasing - approach 2 (Falcon3) 

• Acquire a frame with ~1 el/100 pixels
• Localize electron to a sub-pixel (corner of a physical pixel)
• Replace electron with a function (e.g. Gaussian) that covers multiple pixels



Avoiding the effects of Aliasing - approach 2 (Falcon3) 
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• Acquire a frame with ~1 el/100 pixels
• Localize electron to a sub-pixel (corner of a physical pixel)
• Replace electron with a function (e.g. Gaussian) that covers multiple pixels
• Determine contribute of Gaussian to 9 physical pixels and record



Avoiding the effects of Aliasing - approach 2 (Falcon3) 

• Acquire a frame with ~1 el/100 pixels
• Localize electron to a sub-pixel (corner of a physical pixel)
• Replace electron with a function (e.g. Gaussian) that covers multiple pixels
• Determine contribute of Gaussian to 9 physical pixels and record
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Advantage: benefits 
of anti-aliasing without 
problems of recording 
super-resolution image

Disadvantage: may  
complicate data 
compression



Coincidence loss
(What exposure rate should you use?)



Integration

Electron counting

1

1

1

1

Counting

Counting electrons normalizes the signal from each electron on the sensor



Too many electrons in a frame for counting…

Missed electrons = coincidence loss

Ideal for counting: 1 electron/100 pixels

Camera Frame rate (fps) Exp rate (e/pix/s)
K2 400 4

K3 1500 15

Falcon 3 40 0.4

DE-20 32 0.32

Conditions for achieving 1 el/100 pix/frame

Camera Frame rate (fps) Exp rate (e/pix/s)
K2 400 4-12

K3 1500 15-45

Falcon 3 40 0.4-1.2

DE-20 32 0.32-0.96

Conditions for achieving acceptable coincidence loss

Coincidence loss

Microscope stage must be stable enough to allow counting!



Frame alignment





Unaligned movie Aligned movie

Frame 1
2
3
4

• Define Frame 1 as “unshifted” (0,0)

• Calculate vectors (xshift,yshift) that bring two frames into register

• Can use cross correlation to estimate 6 unique vectors for 4 frame movie:

Frame 1 vs Frame 2
Frame 1 vs Frame 3
Frame 1 vs Frame 4
Frame 2 vs Frame 3
Frame 2 vs Frame 4
Frame 3 vs Frame 4

The MotionCorr algorithm: least squares

Li … Cheng (2013). Nat Methods 10, 584-90.

Can calculate (Z/2) ⨉ (Z-1) cross-correlation 
functions for a movie with Z frames  
(e.g. 30 frame movie yields 435 CCFs) 



=·

tNM means true shift vector between frames N and M 
mNM means measured shift vector (by cross correlation) between frames N and M

t12

t23

t34

m121 0 0

m14

m131 1 0

m23

m24

m34
m12≃1·t12+0·t23+0·t34
m13≃1·t12+1·t23+0·t34

1 1 1

m14≃1·t12+1·t23+1·t34

10 0
1 10

10 0

m23≃0·t12+1·t23+0·t34
m24≃0·t12+1·t23+1·t34
m34≃0·t12+0·t23+1·t34

MotionCorr: least squares method for aligning frames

Li…Cheng, 
Nature Methods

Once matrices are filled in standard 
linear algebra can be used to find  
values that best fit the data for  
t12, t23, t34



The Unblur algorithm: Iterative sum & align (with splines)
Grant & Grigorieff (2015) eLife 4:e06980

Take movie Remove a frame
Align removed  
frame to sum

Calculate sum

Fit trajectories of frames 
to a (smooth) spline

repeat for 
all frames

repeat until convergence



Alignframes_lmbfgs: Gradient-based optimization

optimum 
(minimum)

O(𝚹)

θa

O(θ)

• Conjugate gradients 
• Broyden-Fletcher-Goldfarb-Shanno

Use an objective function that, when minimized, maximizes the sum 
of the correlations of each shifted frame with the sum of the shifted 
frames.

𝞉O(𝚹)/𝞉𝚹a

Calculate the partial derivatives of the objective function to quickly 
and accurately find the best value of the objective/best shifts.

Rubinstein and Brubaker (2015) J Struct Biol 192, 188-95. (arXiv 2014)
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equations. Matrix algebra is then used to determined the frame-to-frame translations that best fit the data in a
least squares sense. This least squares whole frame alignment method has allowed high-resolution structures to be
determined for important biological macromolecules [?, ?, ?].

Cryo-EM of large particles with DDDs has shown that beam-induced motion cannot be completely described by rigid
body translation of entire movie frames [?]. Instead, these experiments suggested that the beam-induced movement
of ice embedded protein is better described by a translation of each particle in each frame. Examination of tilt
pairs of images demonstrated that rotation of specimens, probably due to movement of the ice layer, does occur
[?]. However, the magnitude of these rotations was small and will have the most significant e↵ect on particles with
large radii, like viruses. The consequences of specimen rotation can be neglected at present without limiting map
resolution for particles smaller than 1 MDa. The translation of particles in frames can be written as �~t

z

= �(x
z

, y
z

)
for each particle in frame z, where �x

z

and �y
z

are the di↵erence in particle position between frame z and frame 1 in
the x and y directions, respectively. If these translations are known, their inverse (~t

z

) can be applied to the particle
images before averaging of frames to optimize the extraction of high-resolution information from the image. It is
likely that accurate individual particle motion correction could extract information from images that is neglected by
whole frame alignment. Despite the success of the least squares method for whole frame alignment, it was pointed
out by the authors of the method that it is not able to reliably align image regions smaller than 2000 ⇥ 2000 pixels
for movies acquired using typical conditions. As such, the least squares method is not capable of aligning regions of
frames that contain individual particles in order to correct for deformation of the ice layer during imaging. A method
to align individual particles was introduced that is tightly integrated into the single particle orientation estimation
framework of the program Relion and has resulted in several high-resolution structures [?, ?]. For small particles this
approach requires rolling averages of frames, which increases the SNR over individual frames but loses information
about true trajectories. Also, the individual particle trajectories for small particles from this method include errors,
and it is necessary to fit linear trajectories for particles, which are not necessarily a good approximation for their
true trajectories. Furthermore, the approach cannot readily be used outside of the Relion software package.

Here we aim to identify the translations ~t
z

for movies of individual ice-embedded particles that best bring the frames
into alignment for each particle, without the use of rolling frame averages or fitted linear trajectories. In order to
produce a robust and computationally e�cient method for correcting the e↵ects of beam-induced movement in small
regions in images, or on individual small (< 1 MDa) particles, we pose the problem in terms of optimization. We
propose an objective function based on the correlation of the Fourier transforms of individual frames with the sum of
all frames. A well-established iterative optimization algorithm that makes use of partial derivatives of the objective
function is then used to find the desired translation values. Once optimized, this objective function gives frame-
to-frame trajectories for images of individual particles that show strong local correlation. We show that smoothing
of trajectories for individual particles can be used to identify and correct beam-induced particle movement. These
approaches were implemented in a new program, alignparts lmbfgs.

2 Methods and Results

2.1 Choice of objective function

Based on the observation that averages of unaligned particle frames appear blurred, we propose that a reasonable
alignment for each region of the frame that contains a particle is the alignment that makes the sum of all of the
frames best agree with each of the frames. Accordingly, we propose an objective function that maximizes the sum of
the correlations of the Fourier transform of each shifted frame with the sum of the Fourier transforms of the shifted
frames. Prior to analysis, we apply a temperature factor in Fourier space with the form exp(�B

4d2 ) to prevent fixed
pattern noise from dominating the analysis [?]. The e↵ect of translation on the Fourier transform of a movie frame
is a phase change, �

jz

, in each Fourier component of the frame, written F
jz

for the jth Fourier component of frame
z. The phase shifted Fourier component is given by
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Cryo-EM of large particles with DDDs has shown that beam-induced motion cannot be completely described by rigid
body translation of entire movie frames [?]. Instead, these experiments suggested that the beam-induced movement
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images before averaging of frames to optimize the extraction of high-resolution information from the image. It is
likely that accurate individual particle motion correction could extract information from images that is neglected by
whole frame alignment. Despite the success of the least squares method for whole frame alignment, it was pointed
out by the authors of the method that it is not able to reliably align image regions smaller than 2000 ⇥ 2000 pixels
for movies acquired using typical conditions. As such, the least squares method is not capable of aligning regions of
frames that contain individual particles in order to correct for deformation of the ice layer during imaging. A method
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framework of the program Relion and has resulted in several high-resolution structures [?, ?]. For small particles this
approach requires rolling averages of frames, which increases the SNR over individual frames but loses information
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propose an objective function based on the correlation of the Fourier transforms of individual frames with the sum of
all frames. A well-established iterative optimization algorithm that makes use of partial derivatives of the objective
function is then used to find the desired translation values. Once optimized, this objective function gives frame-
to-frame trajectories for images of individual particles that show strong local correlation. We show that smoothing
of trajectories for individual particles can be used to identify and correct beam-induced particle movement. These
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The Fourier transform of a sum is equal to the sum of Fourier transforms. Consequently, the sum of the jth Fourier
components from all of the shifted frames of a movie with Z frames is given by
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The unnormalized correlation between two Fourier transforms, F1 and F2, is given by F1 · F ⇤
2 where ⇤ denotes

the complex conjugate. For the correlation between the sum image and the individual frame, these values must be
summed for the J Fourier components in a resolution band ~k(j) 2 [~r
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max

]. It is only necessary to consider two
times the real part of the expression for the correlation, because the Fourier transforms of real functions, such as
images, are Hermitian, so that for every term in the correlation (a1+b1i)(a2�b2i) = a1a2+b1b2+(a2b1�a1b2)i there
is a corresponding term (a1 � b1i)(a2 + b2i) = a1a2 + b1b2 � (a2b1 � a1b2)i and adding these two terms removes the
imaginary part of function. In an objective function, the factor of 2 may be neglected without changing the position
of the optimum, and the negative of the function can be used in order to interface with pre-existing optimization
algorithms, which typically seek to minimize functions. Consequently, we can propose an objective function, O(⇥),
that meets the criterion described above:
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be computed e�ciently as the sum of the squares of the real and imaginary parts of the two terms. With equation
4 as the objective function, iterative optimization methods can be used to explore the (2⇥ Z)-dimensional space of
frame translations to find values of x

z

and y
z

that minimize the function.

2.2 Partial derivatives of the objective function

Numerous algorithms exist for optimizing objective functions. Optimization problems can benefit greatly from the
ability to analytically determine partial derivatives, or gradients, of the objective function with respect to all variables.
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where N is the extent in pixels in both the x and y direction of the N⇥N image, and k
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(j) and k
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(j) are the distance
of the jth Fourier component from the origin in the k
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and k
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directions, respectively. As described above, �x
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and �y
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are the di↵erence in particle position between frame z and frame 1 in the x and y directions, respectively.
The Fourier transform of a sum is equal to the sum of Fourier transforms. Consequently, the sum of the jth Fourier
components from all of the shifted frames of a movie with Z frames is given by
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The unnormalized correlation between two Fourier transforms, F1 and F2, is given by F1 · F ⇤
2 where ⇤ denotes

the complex conjugate. For the correlation between the sum image and the individual frame, these values must be
summed for the J Fourier components in a resolution band ~k(j) 2 [~r
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]. It is only necessary to consider two
times the real part of the expression for the correlation, because the Fourier transforms of real functions, such as
images, are Hermitian, so that for every term in the correlation (a1+b1i)(a2�b2i) = a1a2+b1b2+(a2b1�a1b2)i there
is a corresponding term (a1 � b1i)(a2 + b2i) = a1a2 + b1b2 � (a2b1 � a1b2)i and adding these two terms removes the
imaginary part of function. In an objective function, the factor of 2 may be neglected without changing the position
of the optimum, and the negative of the function can be used in order to interface with pre-existing optimization
algorithms, which typically seek to minimize functions. Consequently, we can propose an objective function, O(⇥),
that meets the criterion described above:
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be computed e�ciently as the sum of the squares of the real and imaginary parts of the two terms. With equation
4 as the objective function, iterative optimization methods can be used to explore the (2⇥ Z)-dimensional space of
frame translations to find values of x
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and y
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that minimize the function.

2.2 Partial derivatives of the objective function

Numerous algorithms exist for optimizing objective functions. Optimization problems can benefit greatly from the
ability to analytically determine partial derivatives, or gradients, of the objective function with respect to all variables.
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We elected to use the limited memory Broyden-Fletcher-Goldfarb-Shanno (lm-bfgs) algorithm [?] to optimize the
objective function in equation 4. By providing equations 4, 5, and 6 for lm-bfgs optimization, values of x

z

and y
z

were obtained for movies of V-ATPase particles in ice. Fig. 2A shows the calculated trajectories from optimization
of 200 regions of 320 ⇥ 320 pixels in each frame. These 200 image regions were selected by template matching from
the image in Fig. 1A, and contain a mixture of usable particle images and other image features. The trajectories
show local correlation, even though at this stage in the analysis individual particle trajectories are not provided with
any information about the trajectories of nearby particles, except for any overlap in the 320 ⇥ 320 pixel boxes. Close
inspection of the trajectories in two regions of the micrograph (Fig. 2Bi and ii) reveals noise in the trajectories of
individual particles obtained by the optimization method.

2.3 Smoothing

Although encouraging, the noise seen in trajectories of particles in Fig. 2Bi and ii suggests that the optimization
does not show the true trajectories of individual particle images. One obvious approach to reducing noise in a
trajectory is to calculate the trajectory from a larger portion of the image, thereby increasing the signal available
for calculating the objective function. Unfortunately, as the size of the box used for determining particle positions
increases, particles must progressively be excluded that fall too close to the edge of the image. Increasing box sizes
also results in almost identical trajectories for nearby particles that may mask the local variation in movement that
this technique aims to recover. Better noise removal can be achieved by using two reasonable assumptions that
are neglected in the analysis presented in Fig. 2. The first assumption is that trajectories are unlikely to have
sudden changes in direction, although the possibility of these changes cannot be eliminated. The second assumption
is that nearby particle trajectories are correlated. Enforcing these two conditions can be used to ‘smooth’ particle
trajectories to remove noise.
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We elected to use the limited memory Broyden-Fletcher-Goldfarb-Shanno (lm-bfgs) algorithm [?] to optimize the
objective function in equation 4. By providing equations 4, 5, and 6 for lm-bfgs optimization, values of x

z

and y
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were obtained for movies of V-ATPase particles in ice. Fig. 2A shows the calculated trajectories from optimization
of 200 regions of 320 ⇥ 320 pixels in each frame. These 200 image regions were selected by template matching from
the image in Fig. 1A, and contain a mixture of usable particle images and other image features. The trajectories
show local correlation, even though at this stage in the analysis individual particle trajectories are not provided with
any information about the trajectories of nearby particles, except for any overlap in the 320 ⇥ 320 pixel boxes. Close
inspection of the trajectories in two regions of the micrograph (Fig. 2Bi and ii) reveals noise in the trajectories of
individual particles obtained by the optimization method.

2.3 Smoothing

Although encouraging, the noise seen in trajectories of particles in Fig. 2Bi and ii suggests that the optimization
does not show the true trajectories of individual particle images. One obvious approach to reducing noise in a
trajectory is to calculate the trajectory from a larger portion of the image, thereby increasing the signal available
for calculating the objective function. Unfortunately, as the size of the box used for determining particle positions
increases, particles must progressively be excluded that fall too close to the edge of the image. Increasing box sizes
also results in almost identical trajectories for nearby particles that may mask the local variation in movement that
this technique aims to recover. Better noise removal can be achieved by using two reasonable assumptions that
are neglected in the analysis presented in Fig. 2. The first assumption is that trajectories are unlikely to have
sudden changes in direction, although the possibility of these changes cannot be eliminated. The second assumption
is that nearby particle trajectories are correlated. Enforcing these two conditions can be used to ‘smooth’ particle
trajectories to remove noise.
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Alignframes_lmbfgs: Gradient-based optimization
Rubinstein and Brubaker (2015) J Struct Biol 192, 188-95. (arXiv 2014)
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Particle polishing in Relion

Relion Polishing (Scheres, 2014, 
eLife 3:e03665)

Align rolling frame averages 
to projections of 
reference map

Do whole-frame alignment

Frame2’=ave(Frame1,2,3)
Frame3’=ave(Frame2,3,4)
Frame4’=ave(Frame2,3,4)

FrameN’=ave(FrameN-1,N,N+1)

. 

. 

.

Rolling average of frames

Fit trajectories 
to a straight line 

position=(x0,y0)+(Δx,Δy)*frame

Local averaging 
of speed & direction



MotionCor2

Align whole frames with Unblur-type approach

Divide image into grid of patches (e.g. 5⨉5)

Align each patch with Unblur-type approach

Fit shift at centre of patches to a polynomial model

Use polynomial model to find pixel shifts between patch centres

Deform image so that each pixel is appropriately shifted MotionCor2 (Zheng…Agard,  
2017, Nat Meth 14, 331-2)
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High-throughput structure determination pipeline
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MotionCor2 large dataset



One size does not fit all… (Hui Guo) 

Initial dataset: F20/K2, 239159 particle images, alignparts_lmbfgs (4.4 Å) 

1.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

16.5 8.4 5.6 4.2 3.4 2.8 2.4
Resolution (Å)

Fo
ur

ie
r S

he
ll 

C
or

re
la

tio
n

0.143

NRAMM dataset: Titan Krios/Quantum K2, 470036 particle images, MotionCor2 (4.5 Å)

4.5 Å

NRAMM: Hui (Alex) Wei, Bridget Carragher, Clint Potter

NRAMM dataset: Titan Krios/Quantum K2, 446259 particle images, alignparts_lmbfgs (3.6 Å)

3.6 Å g
b
e

f

k
a

8

d

c-ring

i/j

Mitochondrial matrix

Intermembrane space

Guo et al. (2017) 
Science, In Press



Comparison of motion correction methods

Approach
Frames/

Particles/
Regions

Correlation Smoothing Advantages/Disadvantage

Motioncorr 
(least squares) Frames Noisy images to 

noisy images

Over-determined 
problem (least 

squares fit)

Over-determined/low signal-
to-noise in comparisons

Unblur 
(iterative sum & align) Frames

Noisy images to 
sums of noisy 

images

Trajectory fitted to 
spline Robust/whole frame only

Alignframes_lmbfgs 
(gradient-based) Frames

Noisy images to 
sums of noisy 

images

Penalize changes in 
trajectory (second 
order smoothing)

Relatively fast and robust/
whole frame only

Polishing in Relion 
(projection matching) Particles

Noisy images to 
high SNR map 

projections

Linear fit, rolling 
averages, enforce 
local correlation

Map projection v. high SNR/
map projection may not 

match image

Alignparts_lmbfgs 
(gradient-based) Particles

Noisy particle 
images to sums of 

noisy images

Penalize changes in 
trajectory, enforce 
local correlation

Non-linear trajectories/Map 
projections have higher SNR

MotionCor2 
(model-based) Regions

Noisy patch images 
to sums of noisy 

images
Polynomial model Fast and efficient/May be 

trying to align empty patches



Exposure weighting
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Optimal weighting for radiation damage

Baker, Smith, Bueler, and Rubinstein (2010), J. Struct. Biol., 169, 431-7.
Baker and Rubinstein (2010), Method Enzymol 481, 373-90.

high exposures, making these exposures undesirable. We tested for
the point of bubble formation in cryo-specimens under the stan-
dard conditions that we described. We found that bubbling oc-
curred in ice over carbon between 30 and 45 e!/Å2, but we could
not see bubbling in ice over holes in a grid before 150 e!/Å2. It is
commonly observed that the inclusion of organic additives with
a specimen can reduce the exposure at which bubbling occurs,
and these additives should be avoided when preparing cryo-EM
grids. If organic additives are used for preparing EM grids, they
could reduce the electron exposures that are optimal for an exper-
iment. The second consideration has already been pointed out by
Hayward and Glaeser (1979). From Hayward and Glaeser, the
expression for SNR at a given resolution in the absence of strong
detector and structure noise is

SNR~kðNÞ /
1! e!N=2Neð~kÞ

! "2

N
: ð6Þ

This curve shows a rapid increase in SNR with increasing expo-
sures up to Noptð~kÞ, followed by a gradual decrease in SNR beyond
Noptð~kÞ. Therefore, to maximize SNR at a specific spatial frequency,
it is usually preferable to slightly over-irradiate the specimen
rather than under-irradiate it. Fig. 4 shows the SNR for several res-
olutions as a function of total accumulated exposure. Finally, when
atomic resolution structures are desired, it should be recognized
that high electron exposures can change the chemical structure
of the specimen, initially affecting cysteine, aspartate, and gluta-
mate residues (Ravelli and McSweeney, 2000). Chemical changes
to macromolecular structure can occur as early as 0.1 e!/Å2 (Hen-
derson, 2004; Matsui et al., 2002), and would need to be accounted
for in high-resolution models.

Taking the above issues into account, one can use the data in
Fig. 3 and curves like those in Fig. 4 to select an exposure for use
in an imaging experiment. For single particle experiments, for
high-resolution studies (e.g. 3–5 Å resolution) of symmetric parti-
cles, such as viruses, where determination of orientation parame-
ters for particle images is quite robust, one could use an
exposure of approximately 10 e!/Å2 to maximize the SNR for
high-spatial frequencies. For high-resolution studies of smaller
particles, where good SNRs for frequencies between 100 and 20 Å
are necessary for alignment, a somewhat higher exposure of 15–
25 e!/Å2 could be used. This exposure will improve the SNR of
the low spatial frequencies, but at the expense of a $10% decrease
in the SNR for the high-resolution information. For studies where
the goal is to build a 3-D model at modest resolution, a signifi-
cantly higher exposure of electrons, such as 30 e!/Å2, could be used
to maximize the chances of success, as long as this exposure does
not lead to bubbling in the specimen. The critical exposures that
we measured for low-resolution Fourier components can also be
used to inform the choice of exposure in electron tomography.
However, it is not clear what the relationship is between critical
exposure and the optimal cumulative exposure in a tilt series. Fi-
nally, the curve in Fig. 3 suggests that at 200 kV and liquid nitrogen
temperature, exposures lower than $10 e!/Å2 are unnecessarily
conservative for almost any imaging experiment. The shape of
the curve in Fig. 3 at high resolution is consistent with other recent
studies of radiation damage (Bammes et al., 2010). The critical
exposures that we have determined suggest that many moderate
resolution single particle studies, including our own (Rubinstein
et al., 2003; Lau et al., 2008), have been performed with unneces-
sarily conservative electron exposures that may have reduced the
accuracy of image to model alignment.
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Fig. 3. Critical and optimal exposures at 200 kV as a function of radius in Fourier space. In five different image series, the fastest fading Fourier component in each of 64
resolution bins was identified and its critical exposure determined. The average critical exposure for each resolution bin was calculated from all image series. The larger
uncertainties at higher resolutions are a result of the difficulties inherent in the measurement of low intensity Fourier components, compounded by the nature of the
logarithmic transformation. The experimental critical exposures (points) were fit as a function of resolution (i.e. the inverse of the distance of the resolution bin from the
centre of the Fourier transform) with a weighted linear regression for bins between 80 and 5 Å (solid line). The data had a Pearson’s coefficient of 0.75, which, for the size of
the data set, indicates less than a 0.05% probability that the data is uncorrelated (Taylor, 1999). The fit of the critical exposure with Fourier radius was used to plot an expected
optimal exposure curve (dashed line) at 2.5 times the critical exposure, based on the relationship derived by Hayward and Glaeser (1979). This optimal exposure estimate
assumes minimal detector and structural noise; for real samples and detectors, the optimal exposure is probably slightly lower. At 300 kV, 120 kV, and 100 kV, critical and
optimal exposures would be $25% higher, $30% lower, and $40% lower, respectively (Henderson, 1995; Yalcin et al., 2006).

L.A. Baker et al. / Journal of Structural Biology 169 (2010) 431–437 435

Use this exposure

For this resolution Use this exposure

For this resolution

Hayward and Glaeser (1979). 
Ultramicroscopy 4, 201-10.



Baker, Smith, Bueler and Rubinstein (2010). J 
Struct Biol 169, 431-7.
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Better exposure curves measured by: Grant & Grigorieff (2015) eLife 4:e06980

Used in: Alignparts_lmbfgs (Rubinstein & Brubaker, 2015, JSB 192, 188-95) 
Unblur (Grant & Grigorieff, 2015, eLife 4:e06980) 
MotionCor2 (Zheng…Agard, 2017, Nat Meth 14, 331-2) 

20S Proteasome

20S Proteasome
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Data-driven exposure weighting

Scheres (2014). eLife 3:e03665.



Anisotropic magnification



magnification(x) ≠ magnification(y)

Anisotropic magnification detected numerous microscopes at low magnification

Affects small pixel detectors (Gatan K2/K3, DirectElectron)

Several papers describe (e.g.)

Baldwin, J., Henderson, R., 1984. Ultramicroscopy 14 (4), 319–335.

Grant, T., Grigorieff, N (2015) J Struct Biol (2015) 192(2):204-8.

Zhao, J., Brubaker, M. A., Benlekbir, S., Rubinstein, J.L. (2015). J Struc Biol 192(2):209-15



Thallous chloride crystal - 25 kx magnification setting

d=3.842 Å



FT of thallous chloride crystal image



Average of many thallous chloride FTs
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Anisotropic magnification degrades resolution
Stretch

Distorted particles are 
no longer identical



Thallous chloride crystal



Corrected thallous chloride crystal



Average of many corrected thallous chloride FTs



Anisotropic magnification affects CTF estimation

• Anisotropic magnification 
appear different (worse) at 
low magnification

DF1D
F2

• Will look like objective lens 
astigmatism in power spectra



Easy way to check for anisotropic magnification (Jianhua Zhao)
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Astigmatism: DF1 ≃ DF2 + Const
Anisotropic mag: DF1 ≃ Const*DF2



CTF parameters after anisotropy correction
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Easy way to check for anisotropic magnification (Jianhua Zhao)



Is the problem widespread? (Yifan Cheng/Jianhua Zhao)

TRPv1 CTF parameters
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Decision Relevant concepts Conclusion

Pixel size/magnification 
(Å/pixel)

DQE, Nyquist Limit, 
Aliasing, Anisotropic 

magnification

Resolution of interest must 
be within Nyquist limit and 

have good DQE

Exposure rate (electrons/
pixel/second) Coincidence loss

Minimize coincidence loss 
while keeping exposure time 

reasonable

Frame rate (frames/sec)
Alignability of frames, 

movement within frames, 
radiation damage per frame

Ensure enough signal to 
align frames but exposure 

weight properly

Movie length (seconds) Total signal at different 
resolutions

Ensure enough signal to 
align and classify particles

Decisions you need to make with a DDD 
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