

Julia Mahamid

Department of Molecular Structural Biology, MPI of Biochemistry, Martinsried Starting July 2017: Structural & Computational Biology, EMBL, Heidelberg

- What is next for these challenging methods?
- How hard will it be to do accurate 3D localization for site-specific preparations with cryo-FIB and navigation of tomography data acquisition?
- Will super-resolution cryo-LM become a reality?
- Will high-pressure freezing and FIB lift-out become routine for bulk specimens?
- How will we solve the segmentation problem? Will deep learning methods help with this or are they over hyped?

- What is next for these challenging methods?
- How hard will it be to do accurate 3D localization for site-specific preparations with cryo-FIB and navigation of tomography data acquisition?
- Will super-resolution cryo-LM become a reality?
- Will high-pressure freezing and FIB lift-out become routine for bulk specimens?
- How will we solve the segmentation problem? Will deep learning methods help with this or are they over hyped?

How will we solve the segmentation problem?

Molecular identification

How will we solve the segmentation problem? Will deep learning methods help or are they over hyped?

Automated annotation of cellular cryo-electron tomograms

Chen, Dai, Sun, Jonasch, He, Schmid, Chiu & Ludtke. Nature Methods 2017

How will we solve the segmentation problem? Will deep learning methods help or are they over hyped?

Single-protein detection in crowded molecular environments in cryo-EM images

Rickgauer, Grigorieff, Denk. eLife 2017

What is next for these challenging methods?

Cellular Cryo-Electron Tomography: Sample Preparation Magic

Vitrification Structural Preservation

-180° C

Cryo-Correlative Fluorescence Microscopy: 3D Confocal Imaging Cryo-Focused Ion Beam (FIB): Site Specific Thinning

Cryo-Electron Tomography: 3D Volume Imaging

3D Correlative Microscopy Targeted Cryo-FIB mold, Mahamid et al. Biophys | 2016) Optimization & Reproducibility (Schaffer, Mahamid et al. JSB 2017)

Conductivity (Mahamid et al. Science 2016)

Multicellular Organisms & Tissues (Mahamid, Schampers et al. JSB 2015) Zero-loss energy filter K2 direct detector Volta phase plate (Mahamid et al. Science 2016)

Animation by Tim Laugks , MPI of Biochemistry, Martinsried

What is next for these challenging methods?

Conductivity

Extremely time consuming

Cryo-FIB Lamella: Condensation Rates

Schaffer, Mahamid at al. Journal of Structural Biology 2017

Cryo-FIB Lamella: Thickness Calibration

Schaffer, Mahamid at al. Journal of Structural Biology 2017

How hard will it be to do accurate 3D localization for site-specific preparations with cryo-FIB and navigation of tomography data acquisition?

- High precision is needed to locate things
- High/Super- resolution is needed to separate signals that are close

3D Correlative Cryo-FLM & EM: Aimed at Targeted FIB Milling

Bellow de-vitrification temperature (-135° C)

Thermal and mechanical stability

Avoid frost

Optical z-sectioning: spinning disk confocal microcopy

Adequate sensitivity

Appropriate fiducial markers: overcoming the resolution limit

Schorb and Briggs. Ultramicroscopy 2014

Schellenberger...Grünewald. Ultramicroscopy 2014

Computing coordinate transformation

From 3D LM stacks to 2D topographic images

3D Correlative Cryo-FLM & EM: Aimed at Targeted FIB Milling

Bellow de-vitrification temperature (-135° C)

Thermal and mechanical stability

Avoid frost

Optical z-sectioning: spinning disk confocal microcopy

Adequate sensitivity

Appropriate fiducial markers: overcoming the resolution limit

Schorb and Briggs. Ultramicroscopy 2014

Schellenberger...Grünewald. Ultramicroscopy 2014

Computing coordinate transformation

From 3D LM stacks to 2D topographic images

Reliably recall positions in FIB/SEM, avoid (stage/image) drift during milling

3D Correlative Cryo-FLM & EM: Fiducial Markers

Arnold, Mahamid et al. Biophysical Journal 2016

3D Correlative Cryo-FLM & EM: Correlation Accuracy

Arnold, Mahamid et al. Biophysical Journal 2016

3D Correlative Cryo-FLM & EM: Targeted FIB Milling in Cellular Samples

3D Correlative Cryo-FLM & EM: **Online Targeted FIB Milling**

https://3dct.semper.space/

9 618.72628258 589.2881702... 73.80205780..

3D Correlative Cryo-FLM & EM: Targeted FIB Milling and TEM Navigation

Will super-resolution cryo-LM become a reality?

Cryo-PALM (photoactivated localization microscopy) PA-GFP; NA of 0.7; 5% Ficoll PM 70 as a cryoprotectant

Chang, Chen, Tocheva, Treuner-Lange, Löbach, Søgaard-Andersen & Jensen. *Nature Methods* 2014 Cryo-single molecule localization microscopy; mVenus; NA of 0.75

Kaufmann, Schellenberger, Seiradake, Dobbie, Jones, Davis, Hagen, Grünewald. Nano Letters 2014

Cryo-PALM; Dronpa; NA of 0.8; cryo-sections

Liu, Xue, Zhao, Chen, Fan, Gu, Zhang, Zhang, Sun, Huang, Ding, Sun, Ji & Xu. Scientific Reports 2015

Wolff, Hagen, Grunewald, Kaufmann. Biol. Cell 2016

Will super-resolution cryo-LM become a reality?

Cryo-PALM; PaGFP and PSmOrange; organic solvent immersion; NA of 1.2;

Nahmani, Lanahan, DeRosier, Turrigiano. PNAS 2017

Reiner Kaufmann, Hamburg

David Hoffman, Harald Hess, Eric Betzig, Janelia

Will high-pressure freezing and FIB lift-out become routine for bulk specimens?

- The ultimate objective is to freeze the specimen so rapidly (at 10⁴ to 10⁶ K/s) that ice crystals are unable to form limited to a few micrometers thickness
- At a pressure of 2000 bar the freezing point of water drops to -22 $^\circ$ C; one achieves a depth of vitrification of ~200 μm

Rigort, Baeuerlein, Villa, Eibauer, Laugks, Baumeister & Plitzko, PNAS 2012

Animation by Tim Laugks , MPI of Biochemistry, Martinsried

Cryo-FIB Lift-out: 'Biopsies' on the Micron Scale

Site-specific cryo-FIB lift-out

Miroslava Schaffer, In Collaboration with Kleindiek

Mahamid, Schampers et al. Journal of Structural Biology, 2015

Will high-pressure freezing and FIB lift-out become routine for bulk specimens?

The real question: is it going to happen anytime soon?

Bulk specimen polishing (automated cryo-ultramicrotomy/plasma)

Precise correlation approaches

Faster milling sources (initial preparation of trenches)

Fabrication/micro-printing of carriers

Reliable attachment of lamellae to carrier

10-5

10-3

Miroslava Schaffer Andreas Schertel (Zeiss) Ruud Schampers (FEI) Volta phase plate Radostin Danev

Data analysis

Florian Beck Stefan Pfeffer Antonio Martinez Friedrich Förster Qiang Guo

Sahradha Albert

Retina project

Matthias Pöge Krzysztof Palczewski Sanae Sakami Ning Zhang MPIB Animal facility

3D Correlation

Jan Arnold Alex de Marco Vladan Lucic Tobias Mayer Tim Laugks

CIFAR

MPIB Junior Research Award

EMBO & HFSP Postdoctoral Fellowships

National Postdoctoral Award for Women in Science – The Weizmann Institute of Science

