Wah Chiu

Stanford University

wahc@stanford.edu

Challenges and Opportunities

Questions from Clint and Bridget

- Validation methods have become much better established over the last couple of years.
- What are the methods that are being used?
- In what resolution realms are they useful?
- Do we need more tools?
- How do we avoid mistakes?
- Is validation at very high resolution easier than at intermediate resolutions?
- What about highly heterogeneous datasets?

Cryo-EM Workflow

1. Challenges in Samples

- Flexibility
- Heterogeneity
- Transient

1. Challenges in Samples

- Flexibility
- Heterogeneity
- Transient

16 Å resolution cryoEM Map of AcrABZ-TolC

D Du, Z Wang, B Luisi et al Nature 2014

Improve Purification of AcrABZ-TolC

We add inhibitor MBX3132 to stabilize pump

SDS-PAGE

3.6 Å Cryo-EM Structure of the AcrABZ-TolC Pump with Inhibitor

1. Challenges in Samples

- Flexibility
- Heterogeneity
- Transient

Zernike Phase Contrast Cryo-ET of Syn5 Infected Cell at Various Stages of Infection

Wei Dai et al, Nature (2013)

Five Types of Syn5 Particles Classified from Subtomograms

2. Unsolved issues in Cryo-Specimen Preparation

- Preferred orientation
- Falling apart in cryo-preservation
- Capture reaction intermediates
- Precious samples

New Product Development Opportunities

- New types of grids: cheaper and faster deliveries
- New freezing devices and protocols
- Freezing device to handle potentially biohazardous (BSL2) materials
- Bioreactor chamber to allow performing biochemical reactions
- Single device for freezing and grid loading to a cryoholder in a normal room humidity

3. Electron Microscope Manufacturers

Backbone Traceable Cryo-EM Structures Using Films or CCD in a JEM3200FSC

Cryo-EM vs Subsequent X-Ray Model of Mm-Cpn Chaperonin

Cryo-EM Model Zhang et al *Nature* (2010) (PDB:3LOS) DiMaio et al *Protein Science* (2013) (PDB:3J3X) X-Ray Structure (PDB:3RUQ) Periera et al *EMBO J* (2012) 3 - 4.5 Å Cryo-EM Structures Using Direct Detectors (DE12, DE20, K2) in JEM3200FSC

- 8 viruses
- 6 membrane proteins
- 14 protein complexes

Wish List on New Instrumentations

- Higher voltage
- Cold field emission gun
- Better phase plate
- Aberration free lens
- Energy filter
- Isotropic magnification
- Improved DQE and throughputs in cameras
- Less purchase and maintenance costs

4. Opportunities and Challenges in Image Processing

- Data management
 - EMEN2 S Ludtke *Microsc Microanal* 2013
 - NRAMM Appion Clint Potter and B Carragher
 - LIM Alexis Rohou
 - CryoEM-Logbook (W Chiu, in development)
- Map validation

How to evaluate a cryo-EM map?

 \circ Resolution

Phase randomization of raw images at lower resolution

- Structure features
- ResMap
- o Tilt Pair
- Use different data sets
- \odot Look for structure signatures from EMDB

2 Independent Maps from 2 Data Subsets and 2 Initial Models

Subset 2, N=11,000

Map 2

Hryc, Chen et al PNAS 2017

EMAN2, MPSA, JSPR

Estimating the Map Resolution

Hryc, Chen et al PNAS 2017

Validation of CryoEM Map

Assure No Over-Refinement: Randomize the phases of all the raw particle images for frequencies beyond 75% of the targeted resolution

Estimate the Map Resolution with 2 Maps

Hryc, Chen et al PNAS 2017

How to evaluate a cryo-EM map?

How to evaluate a cryoEM map?

- \circ Resolution
- Phase randomization of raw images at lower resolution
- Structure features
- ResMap
- o Tilt Pair
- Use different software

Benchmark Targets http://challenges.emdatabank.org/

Map Challenge: Raw Images @ EMPIAR

Model Challenge: Maps @ EMDB

Map Challenge: Apoferritin

C. Lawson

Map Challenge: Apoferritin

Map Challenge maps with reported resolution (Å)

C Lawson

How to evaluate a cryo-EM map?

How to evaluate a cryoEM map?

- Resolution
- Phase randomization of raw images at lower resolution
- Structure features
- o ResMap
- o Tilt Pair
- Use different software

IP₃R1 CryoEM Map Resolution Variation

How to evaluate a cryo-EM map?

How to evaluate a cryoEM map?

- Resolution
- Phase randomization of raw images at lower resolution
- Structure features
- ResMap
- o Tilt Pair
- Use different software

Tilt Pair Validation

Murray, Serysheva et al Structure 2013

➡ P. Rosenthal & R. Henderson JMB (2003)

5. Opportunities & Challenges in Modeling

- What are the best practices for simple and complicated structures?
- How to validate models?
- Does it make any difference what software to use ?

DiMaio and Chiu Methods in Enzymology 2016

5. Opportunities & Challenges in Modeling

- What are the best practices for simple and complicated structures?
- How to validate models?
- Does it make any difference what software to use ?

3.3Å CryoEM Map of P22 Bacteriophage

Hryc, Chen et al PNAS 2017

De Novo Model of Single Protein Subunit of P22 Bacteriophage

Hryc, Chen et al PNAS 2017

Baker et al Nature Protocol 2013; Chen et al JSB 2016

Full Atom Modeling (Model Optimization/Refinement)

Building a Model for IP₃R1 Protein Subunit

Modeling Pathway

Matthew Baker

5. Opportunities & Challenges in Modeling

- What are the best practices for simple and complicated structures?
- How to validate models?
- Does it make any difference what software to use ?

GroEL Cryo-EM Map Derived Model Statistics

All-Atom Contacts	Clashscore, all atoms:	12.27	97 th percentile [*] (N=37, 3Å - 9999Å)
Clashscore is the number	r of serious steric overlaps (>	0.4 Å) per 1000 atoms.	
Protein Geometry			
Poor rotamers	0	0.00%	Goal: <0.3%
Favored rotamers	5600	99.01%	Goal: >98%
Ramachandran outliers	0	0.00%	Goal: <0.05%
Ramachandran favored	7168	98.08%	Goal: >98%
MolProbity score^	1.6		100 th percentile [*] (N=342, 3.25Å - 3.95Å)
Cβ deviations >0.25Å	0	0.00%	Goal: 0
Bad bonds:	0 / 54306	0.00%	Goal: 0%
Bad angles:	0 / 73346	0.00%	Goal: <0.1%
Peptide Omegas			
Cis Prolines:	0 / 196	0.00%	Expected: ≤ 1 per chain, or $\leq 5\%$
Low-resolution Criteria			
Ca BLAM outliers	56	0.77%	Goal: <1.0%
Ca Geometry outliers	28	0.38%	Goal: <0.5%
Map / Model Fit			
Cross-correlation	0.926	EmRinger Score	1.438

Roh et al **PNAS** 2017

Even / Odd Maps and Models

Roh et al **PNAS** 2017

Even / Odd Optimized Models

6. Structure Annotation and Archival

- Map and model have to match
- Map and model are deposited to PDB and EMDB
- Should raw data be deposited ?

Gallery of Amino Acids of 3.5 Å GroEL Map

Annotate Model with Atomic Displacement Parameter (ADP)

Roh et al **PNAS** 2017

Properly Weighted Calculated Maps

Map vs Model: Cross Correlation Per Residue

Roh et al **PNAS** 2017

Benchmark Targets http://challenges.emdatabank.org/

Map Challenge: Raw Images @ EMPIAR

Model Challenge: Maps @ EMDB

Useful Reading

Glaeser, RM, Downing, KH, DeRosier, D, Chiu, W, & Frank, J (2007) *Electron crystallography of biological macromolecules* (Oxford University Press, Oxford)