		Microscope			Pixel size	Flux	Exp.	Fluence
Mode	Source	type	Energy (keV)	Detector	(Å/px)	$(e^{-}/Å^{2}/s)$	Time (s)	(e ⁻ /Ų)
Negative stain	W-thermal	Entry level	80–120 ^a	CCD	3.3	9	2	18
Diagnostic cryo	W-thermal	Entry level	80–120 ^a	CCD	3.3	9	2	18
Diagnostic cryo	FEG	Mid-range	200	Falcon 2	2.1	10	2	20
Medium-resolution cryo (\geq 3.5 Å)	FEG	Mid-range/ high-end	300	Falcon 2	1.7	17	3	51
High-resolution ($\leq 3.5 \text{ Å}$) $\geq 400 \text{ kDa}$	FEG	High-end	300	Falcon 2	1.3	28	2	56
High-resolution (\leq 3.5 Å) <400 kDa	FEG	High-end	300 (±5 eV)	K2	1.8	1.5	40	60
Very high-resolution (<2.8 Å)	FEG	High-end	300 (±5 eV)	K2	0.90	6.2	10	62
Cryo-tomography cellular (>30 Å)	FEG	High-end	300 (±5 eV)	K2	3.5 ^b	0.65	1.25 per tilt angle	100
Cryo-tomography high-resolution subtomogram avg. (<15 Å)	FEG	High-end	300 (±5 eV)	K2	2.2 ^b	1.5	1 per tilt angle	60

Table 4 Currently Recommended Data Collection Settings at the MRC LMB

^aDQE is maximum for a phosphor coupled CCD at approximately 80 keV but the effects of specimen charging and mean free path are lower at 120 keV. ^bPixel size is limited by flux instead of spatial resolution.

Methods in ENZYMOLOGY

Volume 579 **The Resolution Revolution: Recent Advances In cryoEM**

Edited by

R. A. Crowther

Detective Quantum Efficiency Current detectors 300 keV

McMullan et al. 2015 & Greg McMullan, unpublished

Lysenin pore (310 kDa)

see Bokori-Brown et. al 2016

K2

- 1.43 Ang sampling
- 29329 particles
- 3.1 Ang resolution
- B factor 61

Falcon 3

- 1.07 Ang sampling
- 10395 particles
- 3.1 Ang resolution
- B factor 35

unpublished, w/R. Henderson

Acknowledgements

Greg McMullan Christos Saava Wasi Faruqi Richard Henderson

Copyright C. J. Russo, M Biology, 2017

All rights reserved.

The enclosed slides are provided for non-commercial, educational use only under the terms of The Creative Commons Attribution-NonCommercial 4.0 International License, and may contain reference to other material subject to copyright restrictions.

https://creativecommons.org/licenses/by-nc/4.0/

Copyright C. J. Russo, MRC Laboratory of Molecular