Pros and cons of direct e⁻ detection with an integrating camera

Warts and all

Scott Stagg

Associate Professor

Florida State University

Outline

- Comparison of integrating vs counting detectors
- Potential advantages of integrating cameras
 - Importance of throughput
- Our experiences with DE cameras
- The DE64
- A fair comparison of detectors

Counting vs. integrating

- e⁻ detection results in a certain number of counts
- Frames are summed up

- e⁻ hits are "counted"
- Removes Landau noise due to e⁻ depositing different amounts of energy
- Counted frames sorted into bins then whole set of frames summed

McMullan et al., JSB, 2014

DQE comparison for various detectors

 Due to reduction in Landau noise, DQE for counting is dramatically better than integrating

Ruskin et al., JSB, 2013

Other key differences between integrating and counting

- 1 second exposure time for integrating vs 10 s exposure for K2 counting for the same dose
 - Gives the integrating mode potential for higher throughput
- Much brighter beam used for integrating compared to counting
 - ~ 60 e-/Å²/s integrating
 - ~ 6 e-/Å²/s counting
 - So beam induced motion will be different for the two modes of data collection

Potential advantages of integrating

- Potentially higher throughput
 - Depending on what is rate limiting step
 - Data collection dependent
 - This can be important because as a field, we're throwing away up to 90% of our data
- Potentially better beam induced motion
 - We have observed less motion than others have reported
 - This has not been systematically tested

Plots of spatial frequency vs. log(N) particles are linear

ResLog slope and intercepts are indicators of quality of data/reconstruction

Stagg et al., JSB, 2014

Lower DQE at low frequency can be compensated by higher dose

Low frequency contrast improves with higher dose

15 e⁻/Ų Aligned/summed 52 e⁻/Å² Aligned/summed 52 e⁻/Å² Aligned/compensated

Our experience with DE cameras

Successes

2.8 Å AAV Spear *et al.,* JSB, 2015

Full length myosin filaments Hu *et al.*, Science Advances, 2016 2.8 Å Human bocavirus Mietzch *et al.,* J. Virol, 2017

A call for objectivity

- Let us endeavor to not be victims of confirmation bias
 - A criticism on a recent grant application suggested essentially "you can't do that without a K2"

Importance of achieving sufficient counts per frame

32 fps

. 32 fps

Progress toward counting

80 counted/summed frames

160 counted/summed frames

Counting on DE20 with Leginon

- Frame rate increased by using only central 1/3 of pixels
- Abandoned because insufficient area to do targeting and autofocusing in Leginon

DE64 at FSU

- Installed in May 2017
- One week afterwards
 - Hose failure gave the camera a bath
 - Also killed the chiller for the Titan
- After camera reinstalled
 - Shutter got stuck
- Unsticking the shutter showered chip in dust
 - Factory serviced shutter and rinsed the chip in acetone
- Working fine now
- S#@t happens

DE64 technical specs

- 6.5 um pixels (as compared to 5 um K2, or 14 um Falcon II)
- Variable frame rate up to 45 fps for 8K x 8K images
 - This can be useful for accumulating sufficient counts per frame with different dose rates
- 146 fps with 2x hardware binning
 - 4K x 4K counting mode

Modulation Transfer Function

 $MTF(\xi)\equiv \mathcal{M}_{image}(\xi)/\mathcal{M}_{object}$.

G. D. Boreman, *Modulation Transfer Function in Optical and Electro-Optical Systems*, SPIE Press, Bellingham, WA (2001).

DE64 e⁻ detection performance

Results so far with the DE64

2688 ptcls 4.3 Å

80S ribosome with preferred orientation

Towards a fair comparison

- The goal: compare reconstructions from same sample on same grid on different cameras
- Determine resolution as function of time on the scope
 - Clearly on a per particle basis particles will be better with counting, but one can collect more particles per unit time with integrating
- Endeavor to take sample preparation variability out of the equation
 - Collect on Apoferritin
 - High symmetry but hard to align
 - Samples prepared with Spotiton

First attempt at Apoferritin

Throughput

- 1421 images in ~12 hours
- 801,000 particles
- ~8 TB of data
- Did not get anywhere with reconstruction
 - There is some problem with the data
 - Thon rings are poor on carbon

Compared to good dataset

Tomography of lamella

Imaging area of 2.8 um at sampling of 3.4 Å/pix

Small cutout showing bilayer

Movie of lamella

Acknowledgements

- AAV
 - Alex Noble
 - Jason Spear
 - Guiqing Hu
 - Reza Paraan
 - Michael Chapman Lab
 - Qing Xie
 - Nancy Meyer
 - Thomas Lerch
- FIB/SEM
 - NRAMM
 - Bridget Carragher and Clint Potter
 - Alex Noble
 - Ash Raczkowski
 - Spotiton team

- Direct Electron
 - Benjamin Bammes
 - Liang Jin
 - Michael Spilman

Supported by:

National Institutes of Health, FSU Developing scholar grant