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CONCLUSIONS

. Validation should be an integral part of the structure
determination process.

. Any method should be permitted to fail under controlled
circumstances as the failure can be as informative as success.

. EM projection images are of very poor quality.

Therefore, they should not be evaluated individually but as
members of statistical assembilies.

. Implementation in SPARX http://sparx-em.org/sparxwiki/
with new additions of tools for the analysis of local variability
(please see the poster).
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Statistical cross-validation
for
detecting and preventing overfitting

Problem of model selection




EM DATA AND PARAMETER ERROR ESTIMATION

- A typical EM experiment generates a single dataset and it is not possible to
derive an analytical expression to determine (alignment) parameter errors

- The challenge is then to estimate parameter errors in the absence of
independent sample sets

- Statistical Resampling offers the best option for accurate estimation of
parameter errors independent of assumptions about their statistical
properties
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EM DATA AND PARAMETER ERROR ESTIMATION

- A typical EM experiment generates a single dataset and it is not possible to
derive an analytical expression to determine (alignment) parameter errors

- The challenge is then to estimate parameter errors in the absence of
independent sample sets

- Statistical Resampling offers the best option for accurate estimation of
parameter errors independent of assumptions about their statistical
properties

If we treat the observed sample (EM dataset) as though it
exactly represented the entire population,

evaluating artificial variability generated through resampling
allows us to accurately estimate variability of a sample statistic
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CTF parameter estimation and error assessment
through bootstrap resampling (CTER

Penczek, P. A., Fang, J., X. Li, X., Cheng, Y., Loerke, J., Spahn, Ch.M.T.: CTER-Rapid estimation of CTF parameters with error assessment. Ultramicroscopy, 140:9-19, 2014.
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CTF parameter estimation and error assessment
through bootstrap resampling (CTER)

Average of selected
power spectra

Determine:
|. defocus

Average power spectrum
and its variance

Penczek, P. A., Fang, J., X. Li, X., Cheng, Y., Loerke, J., Spahn, Ch.M.T.: CTER-Rapid estimation of CTF parameters with error assessment. Ultramicroscopy, 140:9-19, 2014.
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CTF parameter estimation and error assessment
through bootstrap resampling (CTER)

Average of selected

power spectra RESULT

Based on B estimates
compute

average value and error
(std. dev.) of

<defocus>

<astigmatism amplitude>
<astigmatism angle>

Determine:
|. defocus

Average power spectrum
and its variance

Penczek, P. A., Fang, J., X. Li, X., Cheng, Y., Loerke, J., Spahn, Ch.M.T.: CTER-Rapid estimation of CTF parameters with error assessment. Ultramicroscopy, 140:9-19, 2014.
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ISAC: VALIDATION OF 2D MULTI-REFERENCE
ALIGNMENT THROUGH STABILITY TESTING

1. If a set of images is homogeneous, the result from
reference-free alignment is stable even for very low

SNR data.

. The converse is true, i.e., if a set of images is stable,
it must be homogeneous.

2D alignment 1s stable if perturbation of initial alignment parameters
does not produce dramatically different results.
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ISAC: VALIDATION OF 2D MULTI-REFERENCE
ALIGNMENT THROUGH STABILITY TESTING

1. If a set of images is homogeneous, the result from

reference-free alignment is stable even for very low
SNR data.

2. The converse is true, i.e., if a set of images is stable,
it must be homogeneous.

2D alignment 1s stable if perturbation of initial alignment parameters
does not produce dramatically different results.

Assuming 1 and 2 are correct:
If we can find homogeneous subsets of images,
we can solve the multi-reference alignment problem.
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A TEST CASE
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STABLE VS. UNSTABLE CLASSES: TEST RESULTS
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STABLE VS. UNSTABLE CLASSES: TEST RESULTS
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2D MULTI-REFERENCE ALIGNMENT (MRA)

n images

MRA is equivalent to K-means
clustering, with the distance
between images defined as a
maximum similarity over the
permissible range of image
rotations and translations.

I— ———

K-means results depend on the
solution to another nontrivial
problem: the alignment of a set
of 2D images.

Because neither of these two
problems can be easily solved,
the difficulty is compounded.
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K-MEANS CLUSTERING

K-means group assignments

KNOWN PROPERTIES: minimum distance to a template within a row
Very fast convergence guaranteed in a finite T n

number of steps
Converges only to a local minimum

Unclear how to determine the appropriate
number of classes (K)

All images must be assigned to an average

The solution (final averages) depends on the
initial set of averages, and will change if clustering
is repeated using different initial averages

In EM, when alignment is added, classes tend to
collapse
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EQK\FQUAL GROUP SIZE)_MEANS CLUSTERING

Assign n images to K classes

such that each class contains

n .
— images
K
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EQK\FQUAL GROUP SIZE)_MEANS CLUSTERING

EQK-means group assignments
minimum distance to all templates, maximum number per group=3

Assign n images to K classes

such that each class contains

n .
— images

K
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A PROTOCOL FOR TESTING ALIGNMENT STABILITY

J. e Run reference-free alignment L-
times, using randomized initial
orientation parameters

2 e Bring all L sets of solutions into
register by simultaneous minimization
of the variance of orientation
parameters (similar but not equivalent
to alignment of resulting averages)

3 e Compute pixel error for each image
using orientation parameters for L
positions it adopted

4 e The set is called stable if the average
of pixel errors for all images in L
alignments is less than a predefined
threshold (usually one pixel).
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SAC

n 2D images
K initial class averages

!

EQK-means MRA

K classes
n/K images per class

-4

pey

L runs of ab-initio
within-class alignment

|

Stability |

eval:—w

Identify
ssn/K stable

e e e e e e e e e e

e [

Generate K' =K
stable averages

|

Averages

Return
Re-seed K-K°  Yes change

- — K'sK stable averages )
unstable classes between and class assignments
iterations
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CANDIDATE CLASS AVERAGES
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| o All images are accounted for (assigned to class averages)

i

e No validation

" « The candidate class averages are used as initial templates
for proper ISAC
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REPRODUCIBILITY

B Since EQK-means, even if combined with an alighment stability test, does not
guarantee an optimum solution (global minimum) and stable groups can be fake,
we require the solution to be reproducible over a number of quasi-independent
runs.

B We have m=4 EQK-means runs analyzing the data in parallel. Once all runs
produce their respective averages, we compare assignments of images to class
averages and select as reproducible subsets shared among quasi-independent
runs.
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ISAC: ITERATIVE STABLE ALIGNMENT AND CLUSTERING

ISAC

n 2D images

@ We use 4 CPU groups to analyze the data set Kinitial class averages )
m=2 i

simultaneously l

Broadcast

@ Irreproducible averages are eliminated > dataand averages |
to4CPUgroups/

!

! ! !

K,<K stable SAC K,=K stable SAC K=K stable SAC
averages averages averages
and class and class and class

assignments assignments assignments

!

K <K stable SAC
averages
and class

assignments

I

L !
!

Test reproducibility
by m-way matching
of 4 average sets

!

| Re-seed K-K'
irreproducible classes. m: m+1 /
Yes

Return
K'sK reproducible and
stable averages
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Constructive validation:
from ab initio EM map determination to map refinement

2D
3D structure projection

data

Orientation
parameters
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ccfy projection matching
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3D
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reconstruction
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low-pass filtration
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STEP 1: GENERATING A MAP

6‘

Ny
R3sae
i A
systematically :
template generated rar:iccblrenrlze 2D CCf
truct reprojections
structure P (?,D, Sx, Sy)
CC I [ [ [
"l SHC projection matching
ccfz
7 3D
| Orientation i
g{ ){ > ccf3 ccfn >previous best » parameters. reconstruction
1o ¥ \ New best. from
| projections
YD

low-pass filtration
masking?

H. Elmlund, D. Elmlund, S. Bengio, PRIME: probabilistic initial 3D model generation for single-particle cryo-electron microscopy,
Structure, 21 (2013) 1299-1306.
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SHC - CONVERGENCE




SHC - CONVERGENCE




OVERCOMING SHC CONVERGENCE LIMITATIONS BY
MONITORING PARAMETER REPRODUCIBILITY

200 unevenly distributed projections of 70S ribosome
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OVERCOMING SHC CONVERGENCE LIMITATIONS BY
MONITORING PARAMETER REPRODUCIBILITY

GOOD:

© No bias towards the initial structure, in normal
use always randomized start

@ Often converges to a plausible solution

@ Very good for structure refinement

NOT SO GOOD:

@ Convergence properties poorly characterized/
understood, unclear how often it converges
and what does it depend on

@ Sometimes gets stuck in a completely wrong
solution

@ Plausible solutions somewhat different

200 unevenly distributed projections of 70S ribosome
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STEP 2: VIPER

(Validation of Individual Parameter Reproducibility)

L random independent initializations

v

30%
parameters
stable

Evaluate L2 norms for all structures
and retain L best solutions

~ R
Crossover L2 SHC-refine
bejtween ranc_lom differences best until
pairs of solutions <19% convergence
yields L new and STOP
templates

- J
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Ab initio structure determination with ISAC/VIPER:
only the correct averages, only the correct structure
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D3 symmetry
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D3 symmetry
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STEP 3: VALIDATION WITH REPRODUCIBLE VIPER
R-VIPER YIELDS A VALIDATED ab initio MAP

Y

Find a shared subset of parameters

|

|dentify outliers

Calculate

validated map
Eliminate outliers and STOP

Yes




Application of VIPER to a simulated

__heterogeneous 70S ribosome data set

FRVFAPDBIBTRPERED
EBIPRESIDPIHBIHG
PEP LRI OSBRI RESRD
FEFRA DD CRBIBA P
FE R R R TSR
SPBRVIBBBITRERD IS
EPRIFRDAEBPERBOPON
B PRS28BS
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unevenly distributed
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Application of VIPER to a simulated
hetero eneous 7OS rlbosomedata set

6 &
% g 2 B &

180 projections of 70S ribosome +
20 projections of 50S subunit,
unevenly distributed
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