Pawel A. Penczek

The University of Texas – Houston Medical School, Department of Biochemistry.

THE UNIVERSITY of TEXAS

HEALTH SCIENCE CENTER AT HOUSTON

Medical School

3D reconstruction of helical filaments

helical symmetry:

azimuthal rotation per subunit $\Delta \varphi$ axial subunit translation (rise) Δz

$$f(r,\varphi,z) = f(r,\varphi + n\Delta\varphi, z + n\Delta z), \quad n = \pm 1, \pm 2, \dots$$
$$r = \sqrt{x^2 + y^2}$$

Crystal or Single Particle with Symmetry?

Diaz et al: Meth. Enz. 2010 482:131; Egelman: Meth. Enz. 2010 482:167

Egelman: Ultramicroscopy 2000 85:225.

Crystal or Single Particle with Symmetry?

Behrmann, Tao, Stokes, Egelman, Raunser, Penczek: JSB **2012** 177:302.

Single Particle Approach to Helical Filaments

 $f(r,\varphi,z) = f(r,\varphi + n\Delta\varphi, z + n\Delta z), \quad n = \pm 1, \pm 2, \dots$

If filaments were perfectly flat within the ice layer, all EM projection images would constitute orthoaxial projections of the filament and the problem would be to find three orientation parameters for each segment: angles *phi* and *psi* (*theta*=90) and translation along the main axis z

IHRSR

Behrmann, Tao, Stokes, Egelman, Raunser, Penczek: JSB **2012** 177:302.

IHRSR implementation in SPARX

- 1. new implementation offers more flexibility
- 2. orientation searches are done in a sensible way
- 3. point-group symmetries of helical filaments

New features:

- 1. parallelization using python-level MPI makes it possible to execute the refinement rapidly on large clusters
- 2. restricted (constrained) search for in-plane rotation (psi) makes the procedure more robust (segments are pre-aligned along z-axis)
- 3. search for translation restricted to axial rise
- 4. search for helical symmetry implemented under MPI (it tends to be time consuming)
- 5. search for translation adapts itself to the current axial rise
- 6. out-of-plane tilt (theta not equal 90) implemented!
- 7. 3D reconstruction and reprojections done within rectangular prism

Rectangular prism geometry saves computer memory and time of calculations.

Actin-Tropomyosin-Myosin Complex

- JEOL 200 kV EM, 8k CCD Selected decorated filaments (B): Number of filaments: 7,696 Number of segments: 35,319 Pixel size 1.84 Å
- Helical symmetry parameters:
 rise Δz= 27.6 Å
 azimuthal rotation 166.5°

Using the Asymmetric Unit for helical PCA

Conformational modes of the Actin-Tropomyosin-Myosin complex

Structures of:

5 nm

(A) undecorated F-actin filament

(B-D) three groups of decorated Actin-Tropomyosin-Myosin complex conformers (B-D)

Behrmann E, Muller M, Penczek PA, Mannherz HG, Manstein DJ, Raunser S. Structure of the rigor Actin-Tropomyosin-Myosin complex. Cell 2012, 150:327-38.

IHRSR segments are not independent

Fundamental Geometrical Consistency up/down

Geometrical Consistency helical

 Helical consistency would require a physical model of filament flexibility

The Design of Geometrically Consistent IHRSR (gcIHRSR)

- 1. Prediction of orientation parameters based on assumed helical symmetry
- 2. Cooperative initial structure determination (only per-filament changes are allowed)
- 3. High-accuracy structure refinement (only restricted changes per segment are allowed)

1. Prediction of orientation parameters based on assumed helical symmetry

d

$$f(r,\varphi,z) = f(r,\varphi+n\Delta\varphi,z+n\Delta z), \quad n = \pm 1,\pm 2,\dots$$

For each segment we have to assign φ and *z*:

- 1. first segment: φ =0 and *z*=0
- 2. second segment: given *d*, $\varphi = (d/\Delta z) \Delta \varphi$ and $z = mod(d, \Delta z)$
- 3. and so on

2. Cooperative initial structure determination, aka Disk Alignment

The resulting parameters are transferred to segments.

3. High-accuracy structure refinement (only restricted changes per segment allowed)

$$f(r,\varphi,z) = f(r,\varphi + n\Delta\varphi, z + n\Delta z), \quad n = \pm 1, \pm 2, \dots$$

Restriction of searches:

translation t_y no more than one rise: $|t_y| < \Delta z/2$ azimuthal angle $\varphi \cong (t_y / \Delta z) \Delta \varphi$

OUT OF PLANE TILT!

Actin-Tropomyosin-Myosin Complex

segments per filament

segments cumulative

51%

- JEOL 200 kV EM, 8k CCD • Selected decorated filaments (B): Number of filaments: 7.696 Number of segments: 35,319 Pixel size 1.84 Å
- Helical symmetry parameters: • rise $\Delta z = 27.6 \text{ Å}$ (15 pixels)

azimuthal rotation 166.5°

Α

1419	8902
984	7483
1066	6499
1050	5433
660	4383
592	3723
612	3131
288	2519
247	2231
240	1984
336	1744
242	1408
161	1166
120	1005
175	885
156	710
81	554
84	473
116	389
60	273
62	213
0	151
0	151
34	151
35	117
0	82
0	82
38	82
0	44
0	44
U	44
0	44
0	44
44	44

Disk alignment number of filaments 1,705

100% consistent

18.4Å

Constrained search

100% psi-consistent

8.3Å

out-of-plane tilt: 85<theta<95

100% psi-consistent

85% psi-consistent

 $\Delta \varphi = 166.5^{\circ}$ $\Delta z = 15$

azimuthal angle error difference between actual and predicted

$$\Delta \varphi = 166.5^{\circ} \qquad \Delta z = 15$$

Exhaustive						
47.0	90	87.2	-4.0	0.0		
91.0	90	276.7	3.0	-2.8		
122.0	90	277.4	8.0	-3.8		
217.0	90	271.8	-5.7	-2.0		
308.0	90	277.4	2.0	1.9		
291.0	90	88.9	5.4	4.8		
305.0	90	90.0	1.0	0.0		
1.0	90	85.7	-13.0	1.9		

$\varphi \quad \theta \quad \psi \quad t_x \quad t_y$

	Predicted			
0	90	90	0	0
333	90	90	0	-9.3681e-05
279	90	90	0	6.7365e-05
117	90	90	0	5.1956e-05
90	90	90	0	-4.1725e-05
63	90	90	0	1.4733e-05
36	90	90	0	-7.8948e-05
9	90	90	0	-2.249e-05

Disk/t_x alignment

329.9	90	270.0	-18.0	6.0	
356.9	90	270.0	-15.0	6.0	
50.9	90	270.0	-18.0	6.0	
212.9	90	270.0	-15.0	6.0	
239.9	90	270.0	-15.0	6.0	
266.9	90	270.0	-15.0	6.0	
293.9	90	270.0	-15.0	6.0	
320.9	90	270.0	-15.0	6.0	

Local				
326.0	90	277.4	-13.0	3.6
359.0	90	263.3	-12.0	5.4
94.0	90	263.3	-19.0	2.4
223.0	90	273.2	-23.0	6.4
250.0	90	271.1	-24.0	7.5
273.0	90	265.4	-20.0	9.6
305.0	90	272.8	-23.0	9.2
311.0	90	267.9	-21.0	9.2

Conclusions/Future work

- ✓ Geometrically Consistent IHRSR is the <u>correct</u> approach to helical filament structure determination:
 - improved details
 - reduced fake resolution

- ? Cooperative local searches.
- ? Modeling of flexibility ?

Acknowledgments

Stefan Raunser MPI, Dortmund

Max Planck Institute of Molecular Physiology

Elmar Behrmann Charité, Berlin

CHARITÉ

Ed Egelman University of Virginia

David Stokes NYU Medical Center

