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What if one would have many noisy 2D projections of assumedly
identical 3D objects in unknown orientations, and one would want
to know that 3D structure?



Questions?

Conventional and ML 3D (projection matching)
refinement (and the differences between them), Bayesian
extension, how to avoid overfitting, how to avoid model
bias, multi- reference refinement (classification).

Only answers? ....




Cryo-EM inconveniences

* Electrons damage biological mz
dose: large a

Incomplete, ill-posed
inverse problem

oarticles fall on the grid
orientations & classes

— Unkn



Inverse problems



The forward model

X, =CTEPJV, + N,

Given V and CTF, we can simulate X very we

But the other way

around is more difficult!



Incompleteness



Incomplete data problems

Part of the data was not observed experimentally
— Orientations
— Class assignments

Difficult to solve!
— |terative methods?

Complete data problem would be very easy to solve

(Another famous one: the phase problem in XRD)



Incomplete data problems

Observed data (X): images

Missing data (Y): orientations



Complete data problems

white Gaussian noise

X0

AMLE =i§X
N&

Observed data (X): images




Incomplete data problems

Observed data (X): images

Missing data (Y): orientations



Incomplete data problems

e Option 1: add Yto the model —

L(Y,0)=P(X|Y,0)

e Option 2: marginalize over Y —>-

L(©®) = P(X |©) = fP(X 'Y,0)P(Y|©O 1y

|

Probability of X,
regardless Y




The maxCC approach



Statistical data model




Reference-based alighment

* Starts from some initial guess about the structure
AL

Cross.-
correlation i &

- Compare initial guess with each
| < experimental image
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ignh and average
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ignh and average
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The ML approach



Statistical data model




Statistical data model

X, =P¢Vk + IV,
N

white / coloured
Gaussian noise

Statistical

description of the
noise



Maximum likelihood

X Statistical model

. P(X,|4,0)



Do not assign discrete
orientations if the noise
in the data does not
allow this...




Incomplete data problems

e Option 1: add Y to the model

#@emﬂ_‘olf) (rgstgs@i)ata the

Two techniques are equivalent!

e Option 2: marginalize over Y

L(®) = P(X |©) = fP(X Y,0)P(Y|© )¢

|

Probability of X,
regardless Y Read more? See Methods in Enzymology, 482 (2010)



maxCC projection matching

>+ Compare X, with CTE,P V" for all ¢, and select

optimal ¢* based on some similarity measure
(e.g. CC)

e Reconstruction:

ESP*CTEA;

iterate (n+1)

§§P£CT32

e Least-squares solution to V (?)



Maximum likelihood refinement

> ¢ Calculate a probability P(X;[ ¢, ©) for all ¢, based
on an explicit noise model (e.g Gaussian)

* Probability-weighted ang

Theory says this is the
best one can do
(in the limit of infinitely

iterate

large data sets)



Remaining issues

1. What to use as initial guess?
— Local optimizer:

— Wrong initial model -> wrong answer!
— Model bias!



Model bias

e common-lines models are difficult
— 2D projections are OK
— Their combination in 3D is not

e Better (?)

— RCT, sub-tomogram averaging, homologous structure

* EMAN(2) better than projection matching
— But also not guaranteed...



Remaining issues

1. What to use as initial guess?

— Wrong initial guess may lead to wrong answers!
— Model bias!

2. What if multiple structures are present?
— Cannot align against 1 reference
— Alignment + classification problem



Prelim. ribosome reconstruction
91,114 particles; 9.9 A resolution
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blurred

In collaboration with Haixiao Gao & Joachim Frank



Seed generation

¥ 80 A
filter

/ N\

4 random subsets; 1 iter ML
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ML-derived classes

22,176 particles 27,416 particles 25,651 particles 15,871 particles
N— S . _J
e~ Y
no ratcheting; no EF-G; 3 tRNAs ratcheting,
differences: overall rotations EF-G, 1 tRNA

(Results coincided with a supervised classification)



BUT....

e 3D-classification is not a cure for bad data....
e Works best for few well-defined states

* Not all variability can be resolved
— Continuous heterogeneity -> compromises

— Many states may be tricky (expensive at least)
» Supervised classification may be an alternative:
e Fischer et al, Nature, 2010 (>20 states, 2M particles)

— Ultimately a signal-to-noise ratio issue



Remaining issues

1. What to use as initial guess?
1. Wrong initial guess may lead to wrong answers!

2. Model bias!

2. What if multiple structures are present?
1. Cannot align against 1 reference
2. Alignment + classification problem

3. What if | do not infinite amounts of data...



Ill-posedness



The bad news

 The experimental data alone is not enough to
determine a unique solution! (ill-posed)

— Noise tends to accumulate in the reconstruction



The bad news

 The experimental data alone is not enough to
determine a unique solution!

— Noise tends to accumulate in the reconstruction
— Overfitting
— Qver-estimation of resolution

—Incorrect interpretations



The good news

* By incorporating external information, a different
problem may be solved for which a unique
solution does exist!

* Regularization

* Conventional approaches
— Wiener filtering
— Low-pass filtering



2D Wiener filter

* Assume noise is independent
— with spectral power o%(v)

* Assume signal is independent

— with spectral power t?(v)

* Minimise noise in 2D average: (optimal filter)

N
ERT T () CTF, X,
A(n+1) _ i=1 O U)

: RT T (U) CTF Damp A for those Fourier components
E P* + where all CTFs are zero or t2/6? is small
- o’ (v)

Correct CTF AND low-pass filter!




3D Wiener filter

CHAPTER ONE

FUNDAMENTALS OF THREE-DIMENSIONAL
RECONSTRUCTION FROM PROJECTIONS

Pawel A. Penczek

Reconstruction methods based on backprojection and direct Fourier
inversion methods require the implementation of a form of Wiener filter,

which schematically is written as (see Chapter 2):

Z CTF,SSNR, G,

D (1.27)

) CTESSNR, + 1

The summation in the numerator can be realized as a backprojection of
the Fourier transforms of (n — 1)D projections multplied by their
respective CTFs and SSNRs, so the result is nD. However, it is far
from obvious how the summation in the denominator can be realized
such that the result would have the intended meaning after the division is
performed.

Meth. Enzym. (2010)



3D Wiener filter

* Same assumptions
* Plus (often):

2
T () _ @ BUT THIS IS NOT TRUE!!!!
o’ (v)

Low-pass filtering effect is lost!

N
T
E P,.CTF.X,
V(n+1) i=1

/ “Wiener constant”
21) .CTF’




“Arbitrary” low-pass filters

 Many different ones exist
— choose shapes, effective resolution, width, etc.

e User expertise is required!




A Bayesian view on regularization

- C P(X\@)P(@i )

P(X)

Likelihood * Prior

Posterior =
Evidence

Maximum A Posteriori estimation



Likelihood

* Assume noise is Gaussian and independent

— In Fourier space

— with spectral power o?(v): coloured noise

J

P(Xz |k9¢9®) =1_[

1

1 270,

exp
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Prior

* Assume signal is Gaussian and independent
* In Fourier space
* Limit power t%(v): smoothness in real space!

r

1

a8
PO)= H 27T, P 217
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Expectation maximization

5 Wiener filter for 3D
CT 1 reconstruction

N
Zlf (n)PT l d¢+ Tz(n)

1CE S RN R
of = S fri¢
¢

2(n+1)

V(n+1) _

¢ 5 Estimate resolution-dependent
power of noise from the data

X,-CTEP,V [ d

5 Estimate resolution-dependent
power of signal from the data

HV(H)

ron __ PX,[4,6")P($]0")
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3D Wiener filter

E fr<">PT CTFZ LX.dg
e _ i=1 g
2
fr<">PT I dep+ :
2( n) 2 (n)
I= ¢ T
 Calculates SSNR(v) (as a 3D function)

e Hand
* Hand

es uneven orientational distributio
es anisotropic CTFs &

* Corrects CTF & low-pa WITHOUT

* Optimal linear filter

ARBITRARINESS!



Recapitulating...

nverse problem: needs iterating
ncomplete problem: needs marginalizing

ll-posed problem: needs regularizing

Bayesian approach:

— Does all 3 things in optimizing a single function!
— “Learns” optimal parameters from the data

— No ad-hoc parameters to tune by the user



Preventing overfitting

A little detour...

Scheres & Chen (2012) Nature Methods



The pitfalls of undetected overfitting

e 20k simulated GroEL particles

* Conventional projection matching

1.0 =—
[ Reported FSC
0.8} /
0 06}
(L{_) ' / :
0.4} : .
| FSC vs trutfg 464
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0 :
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resolution(1/A)



Overfitting-free refinement

splitin 2 halves

gold-standard FSC-curve

,;

FSC-filtering < > FSC-filtering
¥
ASE
=
b 4 .4
1o converged? yes = yes converged? no

whole-set reconstruction

easy to script into many packages...



Only lower resolution data drive alignment

%eics)lution-dependent contribution to orientabili

0.10¢}

Zorient

Orientations from
half-reconstructions are
AS GOOD AS those from

whole-reconstructions!

o

angular error (°)



*k %

Experimental data
5,053 GroEL particles™
50,330 [3-galactosidase particles

5,403 hepatitis B capsid particles™*

High-resolution crystal structures!

kindly provided by NCM|/Steven Ludtke
kindly provided by Tony Crowther



GroEL

0.05 0.1 0.15 0.2
resolution(1/A)




Hepatitis B capsid

005 041 0.5
resolution(1/A)




3-galactosidase

N\

0.05 0.1 0.15
resolution(1/A)



Conclusions

* Overfitting may be avoided without loss of resolution
— Gold-standard FSCs between 2 independent models

* In the absence of overfitting
— Higher-resolutions may be obtained
— Maps are clean and easy to interpret, fit, etc.
— FSC=0.143 is a reliable resolution estimate



Back to the statistical approach



Gold-standard FSC in the Bayesian approach

* Refine two models independently

* At each iteration: calculate t%(v) based on

FSCeoiq



REgularised Llkelihood OptimisatioN

http://www2.mrc-Imb.cam.ac.uk/relion

Page Discussion Read Edit View history ¥ I Gol Search |
RELJON

Navigation

Main page
Community portal

Toolbox

What links here
Related changes
Upload file
Special pages
Printable version
Permanent link

Running RELION
Using the GUI [edit]

The graphical user-interface (GUI) has been designed to provide an intuitive interaction with the user. It Is strongly recommended to
always run the GUI from the same directory for a given data set. The GUI may be launched from the command line by typing the
command relion. A screenshot is given below.

™ RELION: ...mb/home/scheres/work/bayes/groel nramm bigset [-](0)(x]

| File Run type: | 3D reconstruction | 4 || Start new run |2] ‘

/0| CTF| Optimisation| Sampling | Running1

Number of MPI procs: (8 [} I
Number of threads: (8 | {1} I
Submit to queue?|Yes s

Queue name: |openmpi_8 @)

Queue submit command: [qsub ]E]

Standard submission script: fes/a pp/relion/gui/qsub.csh][E]I'Browse]

[print command|  Run!

RELION may be used to perform different tasks (run types). The following run-types may be selected from the drop-down menu at the top of
the GUI:

e 2D averaging: calculate reference-free 2D class averages

e 3D reconstruction: perform 3D (muiti/single-reference) refinements



Some results

Tom Walz: test new programs on old data!



Classify structural variability

e Standard data set (i.e. used by many groups...)
— 10,000 70S ribosomes (50% +EFG; 50% -EFG)
— MAP-refinement K=4

8 hrs on 64 CPUs



3D auto-refine results

G-galactosidase groEL hepatitis B rotavirus
Sample characteristics
Size (MDa) 0.45 0.8 : 60
Symmetry D2 D7 | I
Microscopy settings
Microscope FEI Polara G2 Jeol 3000SFF  Hitachi HF2000 FEI Tecnai F30
Voltage (kV) 80 300 200 300
Defocus range (pm) 1.2-2.7 1.9-3.2 1.0-2.0 1.2-2.9

Detector

Kodak SO163

Kodak SO163 Kodak SO163

Kodak SO163

Data characteristics

Image size (pixel?) 100 x 100 128 x 128 220 x 220 400 x 400“
Pixel size (A) 2.93 2.12 2.00 2.40
Nr. particles 50,330 5,053 5,403 3,700
RELION parameters

Particle mask diameter (A) 200 205 400 785
Initial low-pass filter (A) 60 60 50 40
Initial angular sampling () 7.5 7.5 3.7 3.7
Local scarches from (°) 1.8 1.8 0.5 0.5
Initial offset range (pixel) 6 6 6 6
Initial offset step (pixel) 1 1 1 1
RELION results

Wall-clock time (hr) 13.6 2.0 8.2 41.5
Reported resolution (A) 9.8 8.2 7.3 5.6
Resolution vs X-ray (A 10.1 8.4 7.3 4.4°

Previous results

Refinement program
Reported resolution (A)

XMIPP*
13.9

EMAN24
5.4 T.4

MRC

FREALIGN®
~0

Resolution vs X-ray (A

12.7

8.7

4.4°




3D auto-refine resul_ts
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Non-overfitted
maps are clean!



More exciting RELION results

» DNA-origami object @ 11.5 A resolution
— See poster (Xiao-chen Bai)



Conclusions

3D-EM reconstruction is ill-posed, incomplete inverse problem
— Needs: regularization, marginalization and iteration

Initial model generation & classification remain problematic in
some projects

Overfittting may be avoided w/o loss of reconstruction quality
— Use gold-standard FSCs, or high-res limited refinement!

Bayesian framework provides a firm theoretical basis for 3D-EM
— Learns optimal parameters from the data

— Very little user input -> objective and easy-to-use

— Excellent quality reconstructions
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