or: How I Learned to Stop Worrying and Love the Beam

Elizabeth Villa

Department of Molecular Structural Biology MPI Biochemistry, Martinsried

NRAMM Worksop on Advanced Topics in EM Structure Determination La Jolla, November 2012

MPI of Biochemistry

NPCs are the mediators of exchange between the nucleus and the cytoplasm

NPCs are the mediators of exchange between the nucleus and the cytoplasm

MPI of Biochemistry

The NPC has a modular architecture

Largest macromolecular complex in the cell MW: ~60 MDa in yeast, ~120 MDa in Metazoa

Composed 30 different nucleoproteins (Nups) Multiple copies of each Nup Arranged in subcomplexes

The NPC has a modular architecture

Cryo-ET can reveal the overall architecture

Two 3-D structures of the Nuclear Pore Complex

Higher Resolution: the NPC has reached the atomic age

Why?

- -Wealth of available structural and "-omics" data
- -EM structure will serve as a scaffold for hybrid modeling
- -Discern between different models
- -Structural Dynamics

How?

- -Cryo-electron tomography
- -S. cerevisiae
- -Thinner samples
- —High throughput
- -Computational classification of states

Brohawn and Schwartz., Nat Struct Mol Biol, 2009.

MPI of Biochemistry

Three-Dimensional Cryo-Electron Microscopy

Subtomogram Averaging

Particles of interest can be extracted from the tomograms. Expectationmaximization algorithm to obtain structure.

But some cool examples...

Alternative I: Isolating organelles (intact nuclei from *S. cerevisiae*)

Enriched nuclear fraction from W303a strain. Overlay of phase and fluorescence images DAPI-stained nuclei.

2-4 um in Dicty

I-I.5 um in yeast

MPI of Biochemistry

Tomography of Yeast Nuclei

grazing view (thicker areas)

FEI Polara G2 @ 300 keV -6 to -8 um defocus -64° to 64°, 2° increment 0.57 nm/pixel

Sample thickness: 400-600 nm ~35 NPC/s per tomogram

Alternative II: Cryo-ultramicrotomy

Alternative II: Cryo-ultramicrotomy

Synaptosomes (Fraction)

MPI of Biochemistry

Cryo-electron Tomography Workflow

Sample thinning through FIB milling

FEI Quanta 3D FEG dual beam FIB/SEM instrument as installed at the MPIB

MPI of Biochemistry

Milled samples will have ideal thickness for tomography and contain NPCs in all orientations

Fragile Specimen: Transfers between microscopes

Transfers between different steps of the workflow: what happens when you multiply a handful of small probabilities

Modified Autogrid

Grid reinforcement using "auto grids" provides mechanical stability during cryo-transfers.

The slot modification allows milling at parallel ion beam incidence.

MPI of Biochemistry

FEI Dual Beam SEM/FIB (Quanta 3D FEG) ~30 sec/nuclei Gallium, 30 keV, 50 pA

FEI Polara 300 keV -8 um defocus -60° to 60°, 2° increment 0.71 nm/pixel

Sample thickness: ~300 nm

compressed to 30% its original thickness

FIB: Lamella Preparation

cryo-SEM

FIB: Lamella Preparation

Focused Ion Beam Milling

Cellular processes *in situ* No compression from diamond knife <u>No fixing</u>

MPI of Biochemistry

MPI of Biochemistry

MPI of Biochemistry

Particle Picking

>A nuclear surface is approximated>The normals of the NPCs are determined.

>Subtomograms are extracted, aligned, and averaged

Nuclear Pore Complex Structure

Architecture of the Nuclear Pore Complex

MPI of Biochemistry

I/3 compression

MPI of Biochemistry

Other Applications

What can go wrong?

Working distance

Vitrification

Size of cells Plunging conditions High-pressure freezing

Transfers

Autogrid Polara cartridge

Curtaining

Platinum coating (need rotational stage)

X

MPI of Biochemistry

Goo Leaks

Charging Don't see it.. yet

Alignment Problems Correlation-based Hopefully no gold

Locate sample 3D Correlative LM-EM

Platinum coating to avoid beam erosion

Progressing Beam Erosion

Protective Pt coating

Feature-tracking alignment blues

Feature-tracking alignment blues

Feature-tracking alignment blues

Uber-blues: Goo, crystalline ice, curtaining

Challenge: 3-D Correlation

What can go wrong?

Working distance

Vitrification

Size of cells Plunging conditions High-Pressure Freezing

Transfers

Autogrid Polara cartridge

Curtaining

Platinum coating (need rotational Stage) Goo Leaks

Charging Don't see it.. yet

Alignment Problems Correlation-based Hopefully no gold

Locate sample 3D Correlative LM-EM

But when it works.. it's all worth it

MPI of Biochemistry

Acknowledgements

Wolfgang Baumeister

Jürgen Plitzko (soon Utrecht!) Felix Bauerlein Tim Laughs Alexander Rigort (now Zeiss) Workshop

Lena Fitting Korkoutis Miroslava Schaeffer

Friedrich Förster Eri Sakata (now Yale) Ohad Medalia (now Zurich) DFG

Max Planck Society Fat, concealed nucleus Ion beam reveals the gate Modeling ensues

Yeast nucleus imaged by SEM . Courtesy of Elena Kiseleva

