

The Scripps Research Institute

Spotiton: A new approach to EM specimen preparation

Tilak Jain

Staff Scientist

National Resource for Automated Molecular Microscopy The Scripps Research Institute (La Jolla)

Focus of project

Images from www

Current methodology (low throughput)

- Buffer conditions
- Concentrations
- Protein states
- Time-points
- Replicates

- Vacuum recovery
- Vacuum crashes
- Contamination
- Manual intensive
- Service requests
- Disillusioned grad students

Next-generation Cryo-EM Specimen Preparation

Precision picoliter to nanoliter volume transfer

Contact-pin printing*

DNA / Protein arrays *

Inkjet dispensing (non-contact)

1000 droplets

* Images from www

Novel substrates to induce on-grid specimen thinning

Inkjet approach to cryo-EM specimen preparation

Critical elements of approach

Spotiton system v0.5 (Manual, One inkjet head)

Spatial and temporal precision of specimen dispensing

Effect of Relative Humidity (RH%) on evaporation rate

62 pL (2 droplets) on a glass slides

40%	50%	60%	70%	80%	90%	93%
0.8	1.3	2.0	2.2	3.6	23.7	92.0
sec	sec	sec	sec	sec	sec	sec

Stability of particles dispensed using inkjet

TMV

Microtubules

GroEL

Lipid nanotubes

Antibody-labeled QDots

CNV

Vitrification of specimens using Spotiton v0.5

GroEL (1.6 nL dispensed on Holey carbon grids)

TMV (3.2 nL dispensed on Continuous carbon grids)

Spotiton v0.75 (Automated, Three inkjet heads)

Vitrified specimen within 250 micron window

Vitrified specimen within 250 micron window

Comparison to traditional freeze

Spotiton frozen

Conclusions

Viability of inkjet technology

Spotiton v0.75

Vitrified specimens

Further developments

Optimize and validation

Novel grid development

Nine inkjet heads

Food for thought...

96 well-plate

Acknowledgments

NRAMM @ TSRI

- Clint Potter
- Bridget Carragher
- AMI members

Ron Milligan Laboratory @ TSRI

- Elizabeth Wilson-Kubalek

Engineering Arts LLC

- Peter Kahn
- Peter Wiktor
- Al Brunner

TEMWindows (Simpore Inc.)

- Christopher Striemer
- James Roussie

Funding sources – National Institute of Health NIGMS GM103310