Structural biology of mitochondria

Werner Kühlbrandt

Max Planck Institute of Biophysics

Frankfurt, Germany

The mitochondrion

- Powerhouse of the eukaryotic cell
- Produces almost all ATP to drive cellular reactions
- Semi-autonomous cell organelle (division, fusion, own genetic system)
- Imports > 99% of proteins from cytoplasm
- Outer membrane is permeable to small molecules
- Inner membrane is site of respiration and ATP synthesis
- Major role in ageing and apoptosis

Schematic drawing of mitochondrion

Mitochondria in a human endothelial cell

QuickTime[™] and a decompressor are needed to see this picture.

 $\sim 10 \ \mu m$

Jürgen Bereiter-Hahn, Frankfurt University

Podospora anserina has smaller mitochondria with fewer cristae

Bertram Daum

Arrangement of the mitochondrial ATP synthase

The mitochondrial respiratory chain

drawn by Karen Davies

Deep-etched Paramecium mitochondrion

R.D.Allen et al, J.Cell Biol. 1989

Dimer ribbons in mammalian mitochondria

rat liver: tubular cristae

bovine heart: lamellar cristae

Strauss et al, EMBO J 2008

Dimer rows are ubiquitous

subtomogram averages

Karen Davies

Cryo-ET of Podospora mitochondrion

QuickTime[™] and a decompressor are needed to see this picture.

ATP synthase dimers

ribosomes

inner membrane

Sub-tomogram average of yeast dimer

Resolution estimate

average of 121 sub-tomograms

Sub-tomogram average of ATP synthase dimer

Sub-tomogram average of ATP synthase dimer

F_1 head

peripheral stalk

beta subunits

Fit of peripheral stalk

ATP synthase dimers self-organize into rows

coarse-grained MD simulation by José Faraldo-Gomez, Claudio Anselmi, MPI of Biophysics

Free energy of dimer association

Energy of elastic membrane deformation is > 6 kT per dimer

For comparison: Free energy of protein-protein interaction (glycophorin A dimer) $\sim 15 \text{ kT}$

José Faraldo-Gomez, Claudio Anselmi, MPI of Biophysics Davies et al, PNAS 2012

Chloropla

inner membrane

outer membrane

ATP synthesis in chloroplasts

Fig. 2. The rate of ATP synthesis as function of ΔpH at different superimposed diffusion potentials. Data was taken from Fig. 1 and additional sets of experiments.

Junesch and Gräber, FEBS Lett 1991

ATP synthesis in mitochondria

Förster, Turina, Drepper, Hähnel, Fischer, Gräber, Petersen, BBA 2010

Respiratory chain supercomplex

The mitochondrial respiratory chain

drawn by Karen Davies

Podospora cristae vesicle

QuickTime[™] and a decompressor are needed to see this picture. ATP synthase dimer row 1

ATP synthase dimer row 2

respiratory chain complexes

crista membrane

Supercomplex in cristae membranes

quantum-dot labelled complex I

Respiratory chain supercomplex I₁II₂IV₁

random conical tilt on thin C film

class averages

reprojections of final volume

Althoff et al, EMBO J 2011

3D cryo-EM map

Althoff et al, EMBO J 2011

Respiratory chain supercomplex I₁II₂IV₁

Complex I (NADH UQ oxidoreductase)
Hunte, Zickermann et al, 2010
Complex III₂ (cytochrome c reductase)
Hunte et al, 2000
Complex IV (cytochrome c oxidase)

Tsukihara et al, 1996 cytochrome C

Rieske FeS

membrane

50 Å

С

F

L

Electron transfer pathways

complex I to complex III: UQ

complex III to complex IV: cyt c

Althoff et al, EMBO J 2011

Sites of oxygen radical production

Protein import

Cryo-ET of chloroplast protein translocase

Bertram Daum with Enrico Schleiff, Frankfurt; Sommer et al, PNAS 2011

Quantum dot labelling of TOC subunits

cytoplasmic location of TOC receptor GTPase

cytoplasmic location of TOC75 POTRA domain

Bertram Daum with Enrico Schleiff, Frankfurt; Sommer et al, PNAS 2011

Podospora anserina: filamentous fungus with a fixed lifespan

filamentous, multicellular fungus fixed lifespan of ~20 days long-lived and immortal mutants

culture

9 days 18 days (senescent)

from Scheckhuber et al, 2006

hyphae

mitochondria

6 days 18 days (juvenile) (senescent)

Age-dependent change of mitochondria

Bertram Daum with Heinz Osiewacz, Frankfurt

Dimer-specific subunit knockouts

cristae morphology ATP synthase arrangement

wild type yeast

dimer rows along edges

subunit g knockout

randomly distributed monomers

Single-particle team

Deryck Mills Janet Vonck Thorsten Althoff

IPIC

Electron tomography team

Bertram Deryck Daum Mills Karen Davies

Thorsten Blum

Goodbye JEOL 3000 SFF

After many years of faithful service our JEOL is going to retire on the 26th of November.

To honor the memory of the JEOL we invite you and your partner to a party on this evening in the MPI bistro beginning at 6 PM.

Dress: fancy dress, anything related to electron microscopy (including structures solved by this technique)

Events will include a slide show on the history of the JEOL and its users, a quiz, a photo shoot in the JEOL room, and election of the best fancy dress.

Please let us know if you are coming at deryck.mills@biophys.mpg.de

Hope to see you there,

Deryck & Janet

How to fix it if it gets broken by Deryck -First & last edition

