Data Collection A view from 30,000 ft to <3 Å

Alex J. Noble Smart Data Collection Workshop!

4-6-22

I want this to be a **brainstorming session** on **collection throughput**

- 30 minutes total
- 15-20 minutes of slides with ideas
- I'll put several ideas on a slide, then we'll brainstorm!

Who are our target audience?

Who are our target audience?

- Most places with a 300keV multi-grid scope also have a 200keV multi-grid scope
 - Are multi-grid scopes our target audience?
- There are hundreds of side-entry scopes too
 - *Not* our main target?

Should we follow the synchrotron model?

Should we follow the synchrotron model? CryoEM annual structures vs. total

Should we follow the synchrotron model? Xray annual structures vs. total

Should we follow the synchrotron model?

Should we follow the synchrotron model?

or just borrow some ideas?

- There are ~70 synchrotrons & hundreds of smaller screening sources
 - There are **277 300keV** multi-grid scopes, **215 200keV** multi-grid scopes, and **hundreds** more **screening** scopes
 - Xray researchers get 8-hour blocks = hundreds of crystals may be screened each session
 - Do we need to increase our screening throughput?

Should we follow the synchrotron model? or just borrow some ideas?

• Like cryoEM, xray screening takes much longer than data collection

- *Xray screening*: **hours+**, *high-quality data*: **minutes**
- CryoEM screening: hours+, high-quality data: hours
- A synchrotron can theoretically collect hundreds of datasets overnight, and 10k+ datasets per year
- Based on published structures, cryoEM may be growing faster now than xray has ever grown.

Where are our bottlenecks in cryoEM?

Where are our bottlenecks in cryoEM?

Not current bottleneck

Current bottleneck

Where are our bottlenecks in cryoEM?

Goals:

- 1) Increase screening speed & feedback to user
 - lots of grids fast! to optimize sample/grid conditions
- 2) Collect high-quality data as **efficiently** as possible
- Use live-processing feedback
- Always do better than human efficiency & quality
- Other broad goals?

Where are our bottlenecks in cryoEM? How can companies help?

- Bigger **autoloaders**, faster & more accurate **stages**
 - 96-grid autoloader = unattended weekend screening
- Bridget's idea: Put holes closer on grids!
 - Is there any reason this can't be done?
- Richard's idea: **Cheaper screening** cryo-TEMs
 - What are the minimum scope requirements?
- Better live- and post-processing software
 - Preferably open source and with clear file handling so researchers can extend and validate it.
- Other ideas?

Where are our bottlenecks in cryoEM? How can researchers help?

- Better live- and post-processing software
 - Preferably open source and with clear file handling so researchers can extend and validate it.
- Devise orthogonal & complementary screening methods
 - E.g. MS or photometry methods
- Label and release curated training data
 - Each labeled image will reap a **hundred-fold+ increase** in future throughput
 - Machine learning is ripe in cryoEM!
- **Other ideas?**

Quick machine learning primer

Quick machine learning primer

- Machine learning models:
 Train from labeled data, apply to new data
- Model generalizability: How well a model works on data with different characteristics from training data
 - Model **re-training**: Continue training an **existing model** with **additional** training **data**
- Active learning:

Real-time label and output updating

Screening as a machine learning problem

Screening as a machine learning problem

Break screening down into *de novo* and *prior knowledge* projects

- De novo: You know nothing about the grid+sample prior to cryo
 - Prior knowledge: You do! E.g. The particle likes thin ice = 'big' squares

Note: **High-res** collection usually comes after screening and thus **includes prior knowledge**

Can screening be broken down differently?

SEMC/SMLC/NYSBC's solution: Smart Leginon

Smart Leginon screening Current progress highlights

For **11 grids** in a Glacios:

- Hands-on operator time: from 6 hrs to 10 min
- Microscope time: from 6 hrs to 5.4 hrs
- Works for *de novo* projects & projects with *prior* knowledge
- Works for different grid types & hole contrasts
- Chooses squares w/ comparable good holes, CT and ice thickness to operators

Smart Leginon Anchi and Paul will show the nuts and bolts=)

Acknowledgements

Paul Kim Software Engineer

Huihui Kuang Scientist

Slavic Serbynovskyi Technician Research Associate

Kashyap Maruthi Scientist

Kasahun Neselu Scientist

Hui Wei Scientist

Edward Eng Scientist NCCAT Manager

Eugene Chua

Scientist

Anchi Cheng Senior Scientist

Mahira Aragon

Alex Noble Scientist / Group Leader SEMC

Tristan Bepler SMLC Group Leader

Bridget Carragher Director

Clint Potter Director

Notional Center for CryoEM Access and Training

NEW YORK STRUCTURAL BIOLOGY CENTER

MONS SF349347 National Institutes of Health Turning Discovery Into Health

NIH IGMS GM103310

Thank you Time for more discussion?

