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Cryo-EM grids are complicated data landscapes
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Cryo-EM grids are complicated data landscapes

= Square and hole variability

- Need to decide how to navigate
through the grid and to find the
‘best’ way through

= Image <5% of grid




How is our data quality now?

=> From all micrographs collected from Jan
2019 to May 2021 in our lab, about 50%
does not contain high resolution
information at all

=> The efficiency of data collection greatly
depends on the expertise

—> How do we collect as many “good”
micrographs in a limited time frame?




Path planning across a cryo-EM grid is challenging

How do we collect as many “qgood’” micrographs in a limited time frame?

=> What is a “good” micrograph?
—> How do we assess data quality at low and medium magnified images?

—> How do we balance trade offs in the time for switching patches, squares, and regions
of atlas with data quality



How do we defined good/bad exposures? (CTF Max Resolution)

Pros:

-unbiased

-generally correlated with data quality
-quick to calculate

Cons:
-unrelated to particle quality
-ice thickness dependent

Specifically for our approach: CTFFIND4



How do we assess hole quality? ("Deep regressor”)
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How do we plan a path across a grid? (Deep Q-network)

Hierarchical grid structure .
Grid, square, & hole images Policy network

Calculating path through dataset

Multi-layered

Action
—>»> @ —> Next hole —>» Reward

Deep regressor
preg Q-score

Hole assessment

— )

Quality score
per hole

Q-network

Decide action




How do we plan a path across a grid? (Deep Q-network)

Designing rewards for training
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CryoRL.: Reinforcement learning-guided data collection

1. Preparation: Grid survey 2. Data collection: Navigate path through dataset
using policy network

1b. Collect patches

Hierarchical grid structure o
Grid, square, & hole images 2b. POlIGy network

Calculating path through dataset

Multi-layered Action R d
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How do we evaluate cryoRL? Systematic data collection

Example ' raph
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cryoRL successfully navigates aldolase cryo-EM gri
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cryoRL successfully navigates aldolase cryo-EM grid




cryoRL successful navigates aldolase cryo-EM grid
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How do we evaluate the result from cryoRL? Naive baseline
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= Collect as many micrographs as

possible in the given time limit

3,538 holes

25 squares




cryoRL successful navigates aldolase cryo-EM grid

00 20 40 60 80 100
Number
> cryoRL
Q 0.21 All micrographs
3]
>
D 0.1 ;
C 4
o [Tl
0.0 T T T T :
0 5 10 15 20 25

CTFMaxRes (A)

500

@ ™
A o0
%.3‘5 »‘ z

B CTFMaxRes<4.0 A
4.0 A<CTFMaxRes<5.0 A
5.0 A<CTFMaxRes<6.0 A
CTFMaxRes>6.0 A

T=6A
# of collected micrographs T = 5A

500

Unique grid areas

Micrographs !
visited

per square

Unique patches Unique squares
visited visited




Transferability - can we can train cryoRL offline and use on
a different sample?

Sample: Apoferritin
Grid: UltrAuFoil 1.2/1.3
Imaging: Talos Arctica + K2




Transferred models from aldolase allows effective data collection

on apoferritin
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cryoRL collected data with better quality than an expert
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cryoRL collected data with better quality than an expert
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Conclusions

- Reinforcement learning combined with hole
regressor allows successful ‘data collection’

= cryoRL learns policy for collecting images that
maximizes data quality given limited time

# of collected micrographs

= Parameter setup allows for relaxed vs. stringent
data collection Micrographs \ Unique grid areas
per square = { j:o\ » % visited
N\ ‘ ),
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Future directions - next steps with cryoRL

More cryoRL vs expert comparison
Update the regressor during data collection
What is a ‘good’ micrograph?

How do we know when to stop data collection?

N 2 2 2

Incorporate into software (SerialEM, Leginon/Magellon, EPU)
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