Automating cryo-EM Data Collection with Reinforcement Learning

Yilai Li, Ph.D.

Cianfrocco Lab Life Sciences Institute University of Michigan

- → Square and hole variability
- Need to decide how to navigate through the grid and to find the 'best' way through
- → Image <5% of grid</p>

How is our data quality now?

- → From all micrographs collected from Jan 2019 to May 2021 in our lab, about 50% does not contain high resolution information at all
- → The efficiency of data collection greatly depends on the expertise
- → How do we collect as many "good" micrographs in a limited time frame?

Path planning across a cryo-EM grid is challenging

How do we collect as many "good" micrographs in a limited time frame?

- → What is a "good" micrograph?
- → How do we assess data quality at low and medium magnified images?
- → How do we balance trade offs in the time for switching patches, squares, and regions of atlas with data quality

How do we defined good/bad exposures? (CTF Max Resolution)

Pros:

- -unbiased
- -generally correlated with data quality
- -quick to calculate

Cons:

-unrelated to particle quality -ice thickness dependent

How do we assess hole quality? ("Deep regressor")

Trained & tested on same grid

<u>General</u> deep regressor tested on single grid

Grid-specific regressor: 1,325 holes

General regressor: 100,578 holes

How do we plan a path across a grid? (Deep Q-network)

How do we plan a path across a grid? (Deep Q-network)

Designing rewards for training

CryoRL: Reinforcement learning-guided data collection

Distributed data collection

2. Data collection: Navigate path through dataset using policy network

How do we evaluate cryoRL? Systematic data collection

cryoRL successfully navigates aldolase cryo-EM grid

cryoRL successfully navigates aldolase cryo-EM grid

cryoRL successful navigates aldolase cryo-EM grid

How do we evaluate the result from cryoRL? Naïve baseline

- → Start from a random position
- → Collect as many micrographs as possible in the given time limit

cryoRL successful navigates aldolase cryo-EM grid

Transferability - can we can train cryoRL offline and use on a different sample?

Sample:	Apoferritin
Grid:	UltrAuFoil 1.2/1.3
Imaging:	Talos Arctica + K2

Transferred models from aldolase allows effective data collection on apoferritin

cryoRL collected data with better quality than an expert

cryoRL collected data with better quality than an expert

Conclusions

- → Reinforcement learning combined with hole regressor allows successful 'data collection'
- → cryoRL learns policy for collecting images that maximizes data quality given limited time
- → Parameter setup allows for relaxed vs. stringent data collection

Future directions - next steps with cryoRL

- → More cryoRL vs expert comparison
- → Update the regressor during data collection
- → What is a 'good' micrograph?
- → How do we know when to stop data collection?
- → Incorporate into software (SerialEM, Leginon/Magellon, EPU)

Acknowledgements

cryoRL Seychelle Vos, Ph.D. (MIT) Michael Cianfrocco, Ph.D. (U-M) Quanfu Fan, Ph.D. (IBM)* John Cohn, Ph.D. (IBM)

Data collection simulator Ja Young Lee (IBM) Veronique Demers (IBM) Lucy Yip (IBM)

U-M Cryo-EM Facility Ashleigh Razcowoski Min Su, Ph.D. Cianfrocco lab Somaye Badieyan, Ph.D. Nick Vangos Emily Eberhardt Lily Hahn Zhenyu Tan

Funding NIH R01 GM143805 (Magellon - Scott Stagg & Gabe Lander) NSF DBI ABI 1759826

