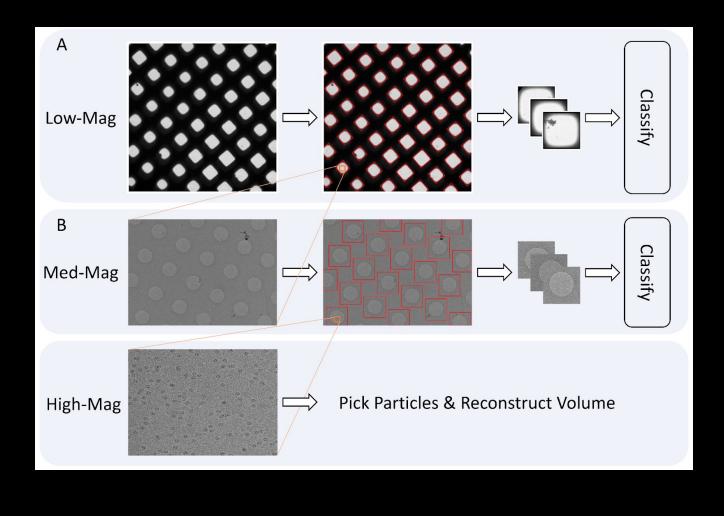
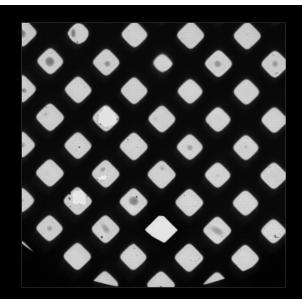
Learning to automate cryo-electron microscopy data collection with Ptolemy

Smart Data Collection Workshop April 2022

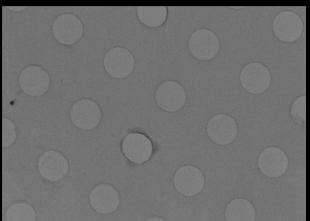


Datasets

- 76 historical data collection sessions
- 1.3k grid tile images w/ square target coordinates
- 11k targeted squares
- 28k square tile images w/ hole target coordinates
- 410k targeted holes

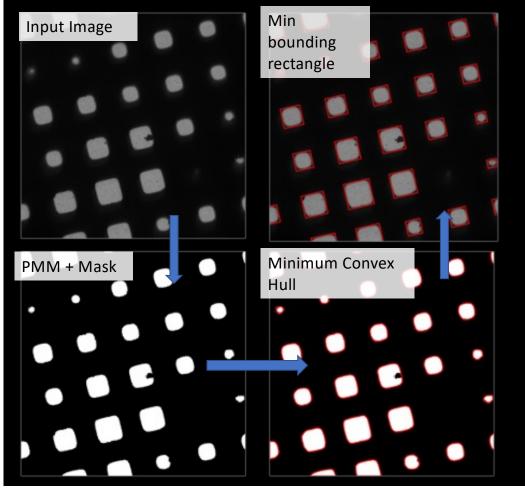


Grid Tile

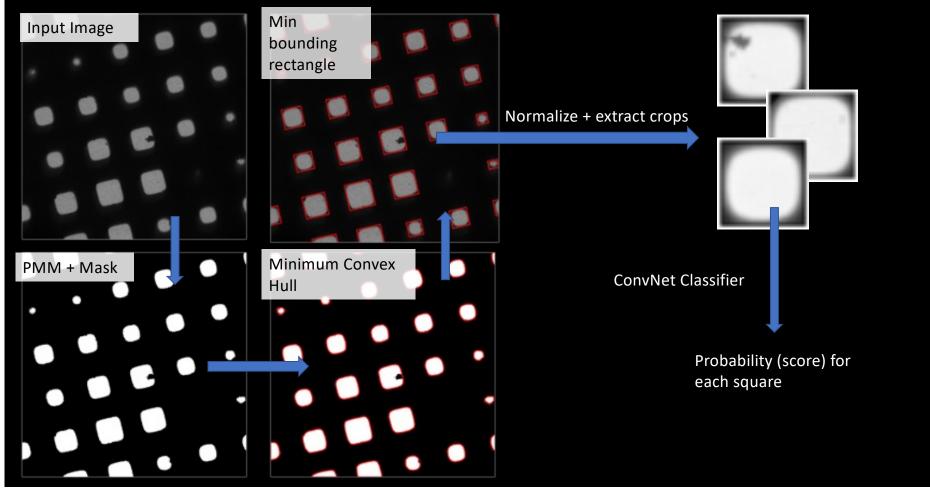


Square Tile

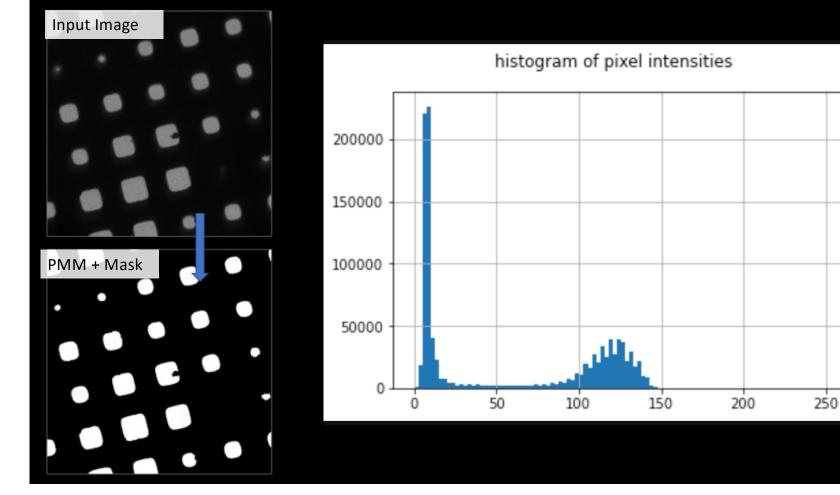
Low2Med: Workflow



Low2Med: Workflow

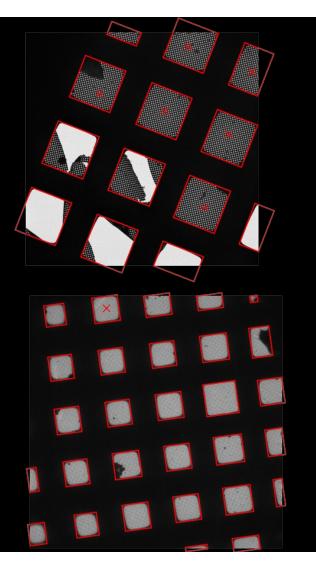


Low2Med: Why Mixture Model Works



Data + Training

- 1.3k total grid tile images
- 98.8% recall of selected squares
- Extract 41k squares, 30k that user did not select, 11k selected
- Predict user selections using CNN on crops, LogReg/RF on image features



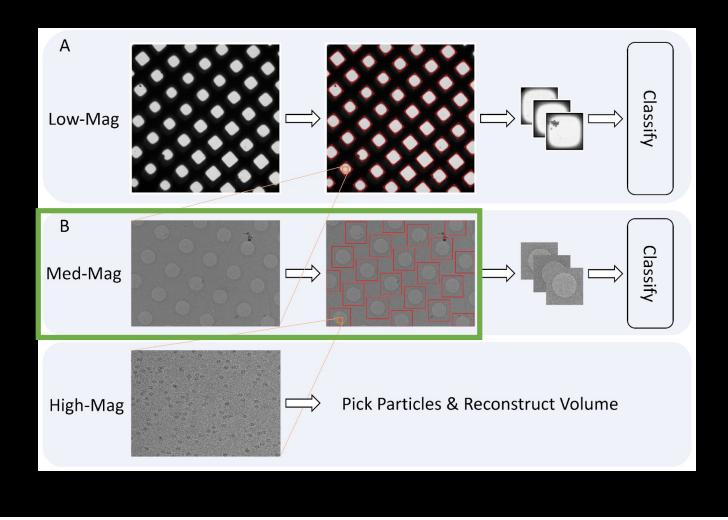
RF and CNN reasonably classify, session generalization is hard

 Table 2. Performance metrics of different ML models on held-out-sessions.

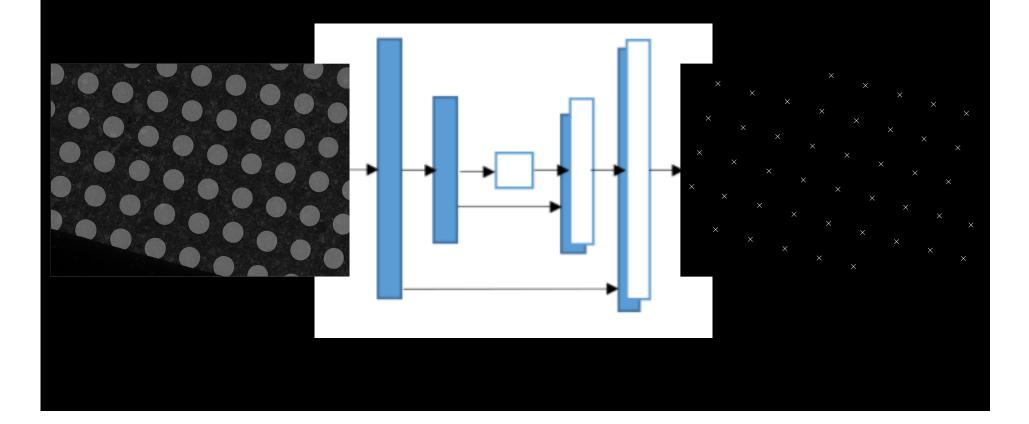
	Session Split		Random Split	
Model	ROC AUC	Avg Precision	ROC AUC	Avg Precision
LogReg	0.539	0.258	0.499	0.259
RF	0.603	0.344	0.867	0.734
CNN	0.608	0.331	0.733	0.489

- 400 model squares \approx 100 operator squares
- Data contains many false negatives
- Session generalization is hard we aren't doing screening
- RF does well
- Eliminates *bad* squares

Example images: darker blue are higher scoring, darker red are 0.20 lower scoring 0.108

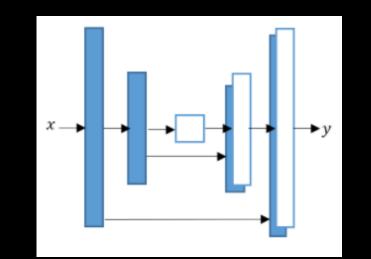


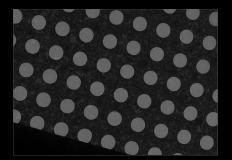
Med2High: Localization w/ U-Net



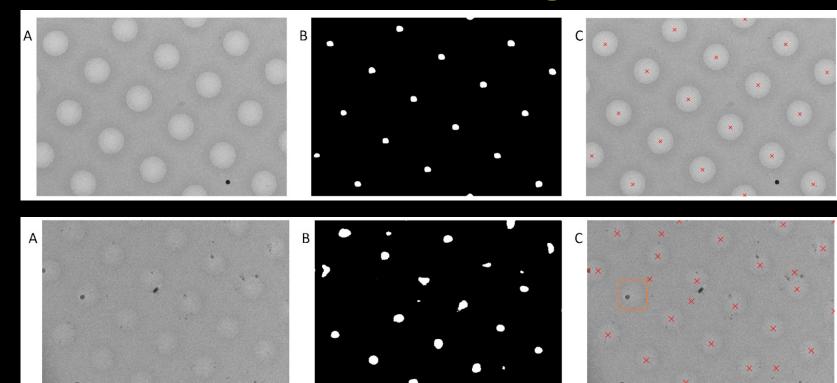
Localization Details

- Data: 28k carbon and gold holeygrid medium-mag images
- Predict operator selection locations from med-mag image using U-Net
- Gaussian smoothing of output + learning of smoothing sigma
 - To address uncertainty in the location where the operator selected



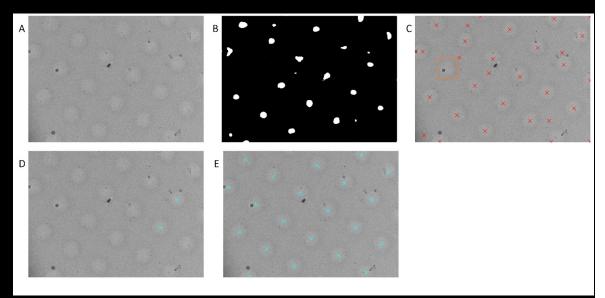


Sometimes U-Net is not enough



The solution: Lattice Fitting

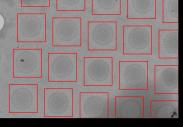
- We know holes lie on square lattice
- Post process w/ lattice-fitting
- Find anchor points for lattice, where lattice points have smallest error from U-Net output

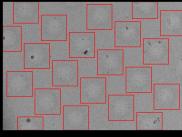


Localization succeeds, lattice fitting improves recall

 Table 3. Performance metrics of different methods on held-out sessions for hole localization from medium-mag images. Reported metrics are aggregated by session and averaged.

Model	Precision	Recall	F1
Yolov3 ⁶	0.395	0.669	0.459
U-Net	0.703	0.984	0.815
U-Net + Lattice Fitting	0.549	0.993	0.702
U-Net + Lattice Fitting + Probability Threshold	0.802	0.891	0.837





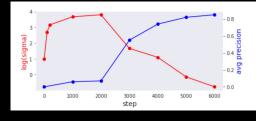
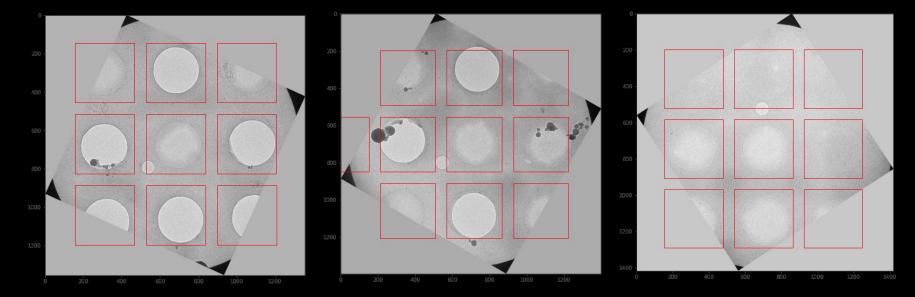
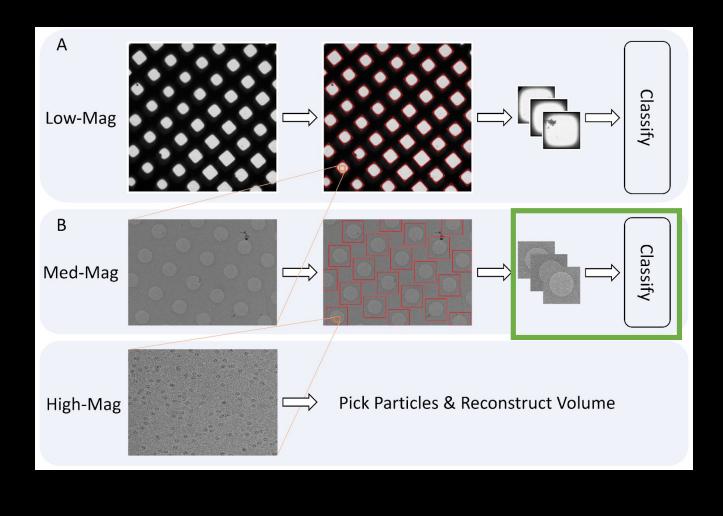


Figure 10. Sigma parameter versus model training progress. We plot the gaussian smoothing sigma parameter against average precision on validation set during training of U-Net.

Localization generalizes to external images



Recall: 0.95, Precision: 0.69

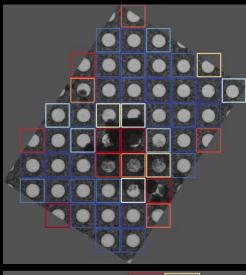


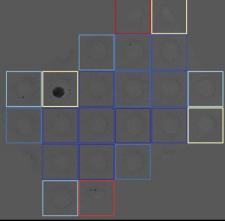
Med2High: Classification

- 571k hole crops extracted from med-mag images
 - 410k targeted
- Large variation in image sizes, because large variation in hole sizes
- CNNs trained on crops
 - Padding vs avg pool

Models learn to classify, average pooling helps

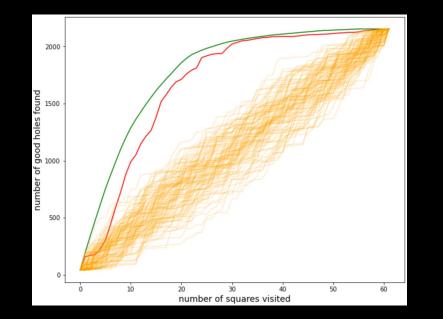
Table 4. Performance of hole classification CNNs on hold-out sessions.						
Model	Accuracy	ROC AUC	Avg Precision			
CNN (padding)	0.748	0.742	0.808			
CNN (avg pool)	0.758	0.796	0.878			





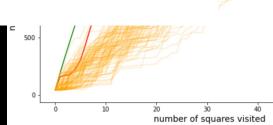
Ongoing work: Active Learning

- Goal: learn characteristics of good and bad squares/holes per session
- Holes: find holes with low ctf resolution (angstroms)
- Squares: find squares with many good holes
- Assumption: square model > hole model
- Use Gaussian Process, square image features

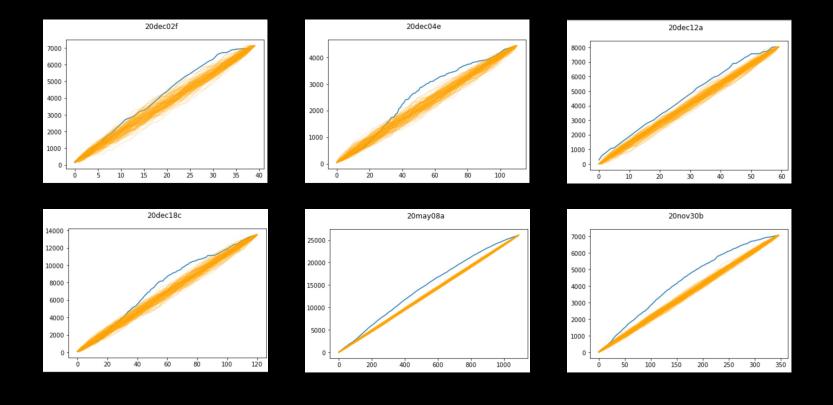


Ongoing work: Active Learning

- Goal: learn characteristics of good and bad se
- resolution
- good hole
- Holes: fine But apparently single ctf Squares: f
 metric is probably not enough!
- Assumption model
- Use Gaussian Process, square image features



Active learning generalizes to real sessions



Future development & questions

- Data upload server
- Persistent model
- Modularity for non SPA use-cases
- Integration w/ collection software
- Revisit hole and square classification after Active Learning
- Better metrics/labels for active learning and beyond
- Can we detect hole xy locations directly from grid tile images?

Future development & questions

- Data upload server
- Persistent model
- Modularity for non SPA use-cases
- Integration w/ collection software
- Revisit hole and square classification after Active Learning
- Better metric for active learning
- A long tail of edge cases
 - Lacy, Chameleon, Dealing with bad grids, live processing integration, superresolution integration, better labels, different meshes, *where* in the square/hole to collect from beyond just the center/the tiling

Superresolution classification

Current Med Mag Images: Superresolution (unbinned) Images: 96.8 angstrom/pixel 12.1 Angstrom/pixel

Thanks!

Operators: Hui Wei, Anjelique Sawh, Eugene Chua, Huihui Kuang, Joshua Mendez, Kashyap Maruthi

Anchi Cheng

ag Alex Noble

Tristan Bepler

NEW YORK STRUCTURAL BIOLOGY CENTER

Bridget Carragher

Clint Potter

SIMONS ELECTRON MICROSCOPY CENTER