

# **Current Practices, Better Options**

Beata Turoňová

EMBL, Heidelberg

# Optimization

- Reducing processing time
  - Computation
  - Manual processing
- Reducing (human-based) errors in processing
- Reducing amount of (low-quality) data
- Assuring robustness w.r.t. sample

# **Reducing Computation Time**

### Good SW development

- Fast, robust, and sustainable
- Properly tested
- Easy to parallelize if possible
- Open-source

### Subtomogram averaging

| Box Size | Matlab   | C++              | C++              | GPU     |
|----------|----------|------------------|------------------|---------|
|          |          | double precision | single precision |         |
| 36       | 1m 11s   | 0m 41s           | 0m 30s           | 0m 10s  |
| 72       | 8m 46s   | $6m\ 04s$        | 3m $47s$         | 0m 46s  |
| 144      | 85m 48s  | $65m\ 11s$       | 38m 47s          | 6m 21s  |
| 288      | 805m 17s | 558m $55s$       | $423m\ 04s$      | 47m 33s |

- Times are for 1 iteration of 100 subtomograms and 100 rotations
- GPU is version **not** at all optimized

# **Reducing Errors in Processing**

• Most caused by switching among different SW



- Automate the transitions as much as possible
- Use SW providing a "complete" pipeline emClarity, Warp
- Always check results after each step

## **Reducing Amount of Data**

- In tomography less is often more
  - Prefer quality over quantity
  - Less data is easier to process, especially if some manual steps are required
- Starting with positions on a grid map
  - Improve your choice during the acquisition
  - Go back to a grid map after your processed a whole dataset
- Remove low-quality data in each step
  - Bad tilts, hard-to-align tomograms, bad particles etc.
  - Tools/scripts to facilitate analysis of the data

### Immature HIV-1 CA-SP1

Human Nuclear Pore Complex (NPC)



- Pixel size: 1.35Å
- Sample thickness: ~160nm
- Particles per tomogram: ~9 VLPs (~350 subtomograms per VLP)
- Symmetry: 6 fold
- Best reported resolution: 3.1Å



- Pixel size: 3.35Å
- Sample thickness: ~450nm
- Particles per tomogram: 0-14 NPCs per tomogram
- Symmetry: 8 fold
- Best reported resolution: ~20Å

### Immature HIV-1 CA-SP1 lattice Human Nuclear Pore Complex (NPC)





| HIV                                  |                           | NPC                                          |  |
|--------------------------------------|---------------------------|----------------------------------------------|--|
| ~30min per TS<br>+5 hours setup      | Tilt-Series Acquisition   | ~40min per TS<br>+6 hours setup              |  |
| ~1h per TS                           | Tilt-Series Preprocessing | ~1h per TS                                   |  |
| ~20-60 min per TS<br>Max 10 TS a day | Tilt-Series Alignment     | ~20-60 min per TS<br>Max 10 TS a day         |  |
| ~60min per<br>reconstruction         | Tomogram Reconstruction   | ~90min per<br>reconstruction                 |  |
| ~10min per<br>tomogram               | Particle Picking          | ~15min per tomogram<br>Max 20 tomogram a day |  |
| Up to 1 week                         | Subtomogram Averaging     | Weeks                                        |  |
| 2-3 weeks                            | 100 tomograms             | 8-10 weeks                                   |  |

## HIV

- Tilt-Series Alignment
  - Few fiducials but can be automatically tracked
  - Problem is the precision
  - Can be overcome with local alignments based on subtomogram positions (emClarity, Warp)

## NPC

- Tilt-Series Alignment
  - Poor fiducial distribution
  - Problem is choosing "good" fiducials and track them (low SNR at high tilts)
  - Low SNR prevents (for now) successful use of local alignments approach

- Particle Picking
  - Manual picking using geometry is fast
  - Template matching works as well (emClarity, Warp?)

## Particle Picking

- Manual picking is demanding and requires experience
- Template matching does not work – easier to pick manually than clean the many false positive
- Maybe deep-learning approaches might help here

# SW with a "Complete" Pipeline

## • emClarity

- Very good results (HIV: 3.1Å)
- Improvement of tomogram alignment based on subtomograms
- Interesting classification method
- Requires Imod and Chimera
- Some parts still missing
- Written in Matlab and uses GPU
- Not flexible / modular
- Hard-coded settings
- So far rather user-unfriendly
- Warp for SA
  - Also very good results (HIV: 3.3Å)
  - Improvement of tomogram alignment based on subtomograms
  - Self-contained
  - Written in C#
  - GUI
  - Not explored: parameters, modularity

# Summary

- Currently the processing is not robust w.r.t. samples
  - For difficult samples the automatization remains challenging
- Some samples can be processed efficiently and with little manual intervention
  - Optimize your sample as much as possible
  - Take your time during acquisition
    - Careful and experienced setup of positions
    - Prefer data quality over acquisition speed
  - Do not lose control over your data
- Share your data, parameters, and experience to help improve current SW and benchmark different approaches