Challenges in Cryo-electron Tomography

D. N. Mastronarde

Dept. of MCD Biology, University of Colorado, Boulder, CO

Challenges, Goals, and Needs

- Challenges fall into two categories: acquisition and processing
- Overall goal: Better, faster, and more automatically
- The area of acquisition has two main currents:
 - Methods used to obtain the highest resolution subvolume averages
 - A push for more speed, particularly with novel acquisition methods that are likely to degrade resolution
- Need more clarity on the domain of applicability for rapid acquisition methods
 - Will they just be good for screening or also useful in resolution range that most users hope to achieve?

Challenges in Fast Acquisition

- How well can rapid tilting methods do with current technology?
- What technological improvements are needed to do better?
- Can they be achieved in a robust, commercially available and supportable way?
- To look at specific nearer-term questions, compare popular protocol for getting high-resolution data with current capabilities for rapid tilting

Some Key Ingredients in the Hagen Scheme

- Acquire in dose-symmetric way, with lowest accumulated doses near 0°, by taking images at 0, +2°, -2°, +4°, -4°, etc
- Backlash the tilt changes on one side of zero
 - Essential for returning close to same position
 - Also helps with discontinuity in alignment between two directions: avoids rotation of mechanical tilt axis
- Wait for drift to be under 1 pixel per frame
 - Maintains quality of motion-corrected data
 - Measuring drift is more efficient than waiting a long fixed time
- Keep focus at a consistent value for good CTF correction
 - Autofocus is iterated if necessary until change is below a threshold
 - This may be of lesser importance if defocus can later be determined accurately in individual images

Features in SerialEM to Support Continuous Tilting

- A script command, *BackgroundTilt*, can start a slow continuous tilt and allow the script to go on to acquire and save images
 - Ideal for rapid tilt series from plastic sections with a OneView camera doing drift correction in continuous acquisition mode (Martin Schorb at EMBL)

Features in SerialEM to Support Continuous Tilting

- A script command, *BackgroundTilt*, can start a slow continuous tilt and allow the script to go on to acquire and save images
 - Ideal for rapid tilt series from plastic sections with a OneView camera doing drift correction in continuous acquisition mode (Martin Schorb at EMBL)
- SerialEM has a thread that can do a variety of actions during camera acquisition
 - Tilt or move stage or change image shift after exposure, for extra settling time
 - Continuous changes like dynamic focusing for STEM
- *TiltDuringRecord* command makes that thread start a slow continuous tilt during a long camera acquisition that saves many frames
 - But this is all the procedure can do, and it blocks other script actions

Features in SerialEM to Support Fast Incremental Tilting

• To support rapid incremental tilt series, the thread can now perform a stored sequence of actions including:

image shift focus change

tilt

wait for an extra delay

unblank - wait for exposure time - blank

 Each action is optional on any given step, including the unblank sequence if tilting twice for backlash, or the tilt in case a continuous tilt was started

Features in SerialEM to Support Fast Incremental Tilting

• To support rapid incremental tilt series, the thread can now perform a stored sequence of actions including:

image shift focus change

tilt

wait for an extra delay

unblank - wait for exposure time - blank

- Each action is optional on any given step, including the unblank sequence if tilting twice for backlash, or the tilt in case a continuous tilt was started
- QueueFrameTiltSeries sets up a sequence with fixed parameters to happen during the next Record
- QueueFrameSeriesFromVar sets up a sequence with an array variable specifying separate parameters for each step
 - The variable can be read from a file
 - The sequence could come from a conventional tilt series where X/Y/Z positions are available after the series
 - It could come from analysis of a frame tilt series

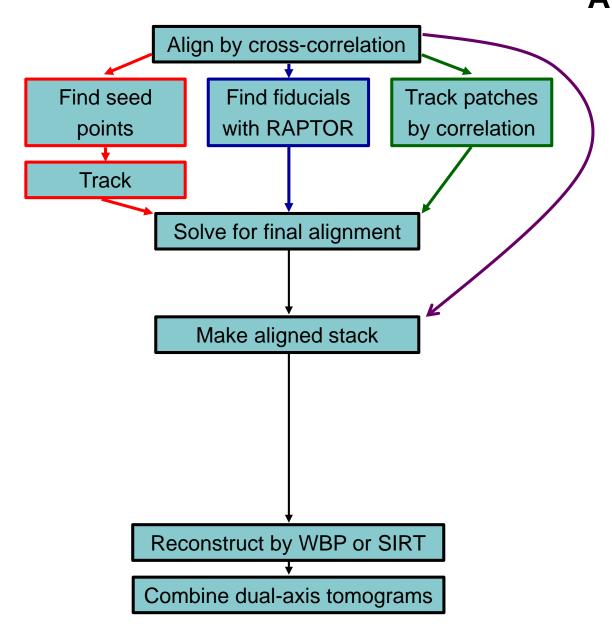
How Well Can a Sequence of Changes Work?

- The sequence of image shift and focus changes represents a return to the precalibration approach
 - Can it be used with much smaller fields of view?
- Eucentric height has to be set well for a sequence from one series to apply in another
 - What is the fastest way to find eucentricity with adequate accuracy?
 - CTF fitting in Focus area on opposite sides after setting eucentric focus is worth trying

How Well Can a Sequence of Changes Work?

- The sequence of image shift and focus changes represents a return to the precalibration approach
 - Can it be used with much smaller fields of view?
- Eucentric height has to be set well for a sequence from one series to apply in another
 - What is the fastest way to find eucentricity with adequate accuracy?
 - CTF fitting in Focus area on opposite sides after setting eucentric focus is worth trying
- How well will a sequence in one area work in other areas, particularly different positions lateral to tilt axis?
 - Maybe all that is needed is a lateral tilt axis offset that can be characterized and compensated
 - Or maybe storing calibrations for different lateral positions will work over a longer term
- Would the sequence(s) need to be prepared per session, or will stored calibration(s) work for some time?

Can the Key Aspects of the Hagen Scheme Be Supplied in Fast Tilting?

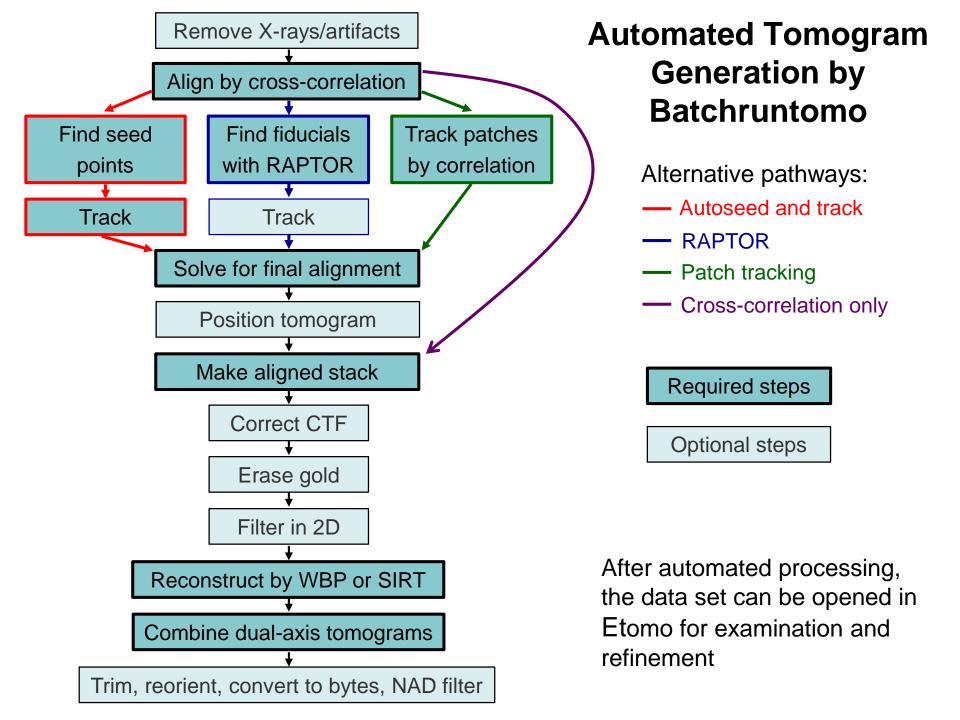

- Backlash on half the tilts is possible, it just costs some time
- Waiting for drift to settle is possible in the programmed sequence, but is the most problematic aspect
 - Is settling time stereotypical or variable from one area to the next?
 - Does it vary with tilt angle?
 - Is it so large that it becomes the large majority of acquisition time?

Can the Key Aspects of the Hagen Scheme Be Supplied in Fast Tilting?

- Backlash on half the tilts is possible, it just costs some time
- Waiting for drift to settle is possible in the programmed sequence, but is the most problematic aspect
 - Is settling time stereotypical or variable from one area to the next?
 - Does it vary with tilt angle?
 - Is it so large that it becomes the large majority of acquisition time?
- Focus is unlikely to be as consistently accurate as with iterated autofocusing, even with the programmed sequence
 - Focus changes from incremental tilting at short intervals may be more smoothly varying than in conventional series, allowing adjacent views to be combined in CTF determination when necessary
 - Might need to use bidirectional series from ~20° to get most consistent focus from fast tilting
 - Or it might not matter! Electron counting images generally give good single-image defocus estimates through whole tilt range

Tilt Series Processing

- Automated processing capabilities already exist in various forms
 - Appion/Protomo
 - IMOD
- IMOD batch processing is designed to handle every step of the processing sequence and provide control over numerous options


Automated Tomogram Generation by Batchruntomo

Alternative pathways:

- Autoseed and track

- RAPTOR

- Patch tracking
- Cross-correlation only

Setting Parameters for Batch Reconstruction in Basic Interface

 Tried to keep it as simple as possible, so it fits on a screen

- Global	Dataset Values							
Image distortion file:	Advanced							
Mag gradient file: /usr/local/ImodCalib/Dist	ortion/F30-magGrad/m							
✓ Remove X-rays								
Manual replacement model:	Make in 3dmod							
Coarse aligned stack binning - single fra	me: 1 - Montage: 1 -							
Alignment Method								
Autoseed and track	Patch tracking							
Raptor and track	Raptor and track 🛛 🔾 Fiducialless							
Bead size (nm): 15	Target number of beads: 100							
Patch tracking size: 300,300	Break contours into pieces							
Enable distortion (stretching) in align	nment							
✓ Use local alignments								
Do positioning for: Plastic section	n 🔾 Cryo sample							
Tomogram thickness: Image: Sample has gold beads Bead size (nm): 15								
Aligned stack binning:	1 📩							
Correct CTF	🖌 Erase gold							
Autofit range and step	Use fiducial model							
○ Fit every image	Find beads in 3D							
Defocus:	Tomogram thickness (pixels): 360							
Reconstruction								
Back-projection	ickness total (unbinned pixels):							
• • • • • • •								
	ickness total (binned pixels):							
⊖ SIRT ⊖ Th								
⊖ SIRT ⊖ Th	ickness total (binned pixels):							
 SIRT Both O Cal 	ickness total (binned pixels):							
 SIRT Both Cal Leave iterations: Scale to integers 	ickness total (binned pixels): culated thickness (unbinned pixels): With fallback: 300							
 SIRT Both Cal Leave iterations: Scale to integers 	ickness total (binned pixels): culated thickness (unbinned pixels): With fallback: 300 Plus (optional): 10							

New Advanced Interface Gives Access to > 150 Other Parameters

Section with CTF parameters opened up

Batchruntomo I	nterfac	e		
Batch Setup S	Stacks	Dataset Valu	ues Run	
-		Global Dat	aset Values	
Which Directiv	es to S	how		Basic
□ Only items c	ontaini	ng a value		
□ Only items o	utput to	o batch files		Close All Sections
+ Arguments to Copytomocoms				
+ Other	Satun P	arametere		

	+ Aligned Stack Parameters		
	- CTF Correction Parameters		
	Invert sign of tilt angles for CTF fitting:	-	
	Start & end frequencies of range to fit:		×
	Number of zeros to fit past 2nd zero:	3.5	×
	Vary exponent of CTF function in fit:	-	
	Order for baseline fitting polynomial:		×
	Expected phase shift from phase plate:	90	×
	1/1/1 to find astigmatism/phase/cut-on:	1,1,0	×
	Min views for astigmatism and phase:	5,3	×
	List of views to exclude:		×
	Exclude skip list only from astig/phase:	-	
	Constant phase shift value to apply:		×
	Invert sign of tilt angles for correction:	-	
	Spacing between corrected strips:		×
	+ Reconstruction		

Tilt Series Processing

- Speed of processing is less of an issue than for acquisition
 - If necessary, tilt series can be handled by multiple machines
- IMOD processing is fast, can be ~5-10 minutes for 4K data sets
- Potential challenges:
 - Missing pieces in IMOD fully automated processing: e.g., detection of bad pictures, automatic detection of boundary (carbon hole edge) for fiducial tracking
 - Tilt series alignment
 - CTF correction
 - Hooking it all up into acquisition-reconstruction pipeline
 - Relatively straightforward in a single defined environment, more difficult to provide a distributable tool

Automated Tilt Series Alignment Is Still a Challenge: Fiducial Marker Alignment

- Fiducial markers are still the best way to guarantee a globally correct alignment (consistent across full tilt range)
 - If numerous enough, they allow nonlinear modifications to the alignment that can improve cryotomograms and subvolume averages
 - Local alignments in IMOD: separate fits to overlapping subsets of fiducials
 - Polynomial fits to the full set of fiducials: bundle adjustment (Lawrence et al, 2006) and modeling of beam-induced motion (Fernandez et al. 2018)

Automated Tilt Series Alignment Is Still a Challenge: Fiducial Marker Alignment

- Fiducial markers are still the best way to guarantee a globally correct alignment (consistent across full tilt range)
 - If numerous enough, they allow nonlinear modifications to the alignment that can improve cryotomograms and subvolume averages
 - Local alignments in IMOD: separate fits to overlapping subsets of fiducials
 - Polynomial fits to the full set of fiducials: bundle adjustment (Lawrence et al, 2006) and modeling of beam-induced motion (Fernandez et al. 2018)
 - But fiducial selection and tracking is still problematic for some fraction of data sets
 - It can be difficult to get gold into the specimen with a good number and distribution, or impossible for cryosections and FIB lamellae
 - The gold may not behave the same as the biological material

Automated Tilt Series Alignment Is Still a Challenge: Correlation-Based Alignment

- The main alternatives to fiducials are two variations of correlation-based approaches
 - Whole image correlations, including iterative alignment with reprojections from tomogram (Protomo from Hans-Peter Winkler)
 - Correlation of image patches through the series, with tracked locations fit to an alignment model
 - Alignator by Castano-Diez, patch tracking in IMOD
 - Allows local alignments if there are enough patches, which is difficult for most cryosamples with low SNR

Correlation-based Approaches May Not Give Globally Consistent Alignment

- There is no guarantee that correlation between adjacent views is aligning the same features through the whole series
 - Specimens have thickness, and the features that dominate the correlation may shift to different heights during the series

 Images near 30° align to put top in tomogram center

 Images near 0° align to put middle in tomogram center

 Images near 0° align to put middle in tomogram center

 Images near -30° align to put bottom in tomogram center

- Iterative alignment to tomogram reprojections has little driving force for fixing such a global misalignment
 - Due to central section theorem, a reprojection will have only information contributed by views at nearby tilt angles

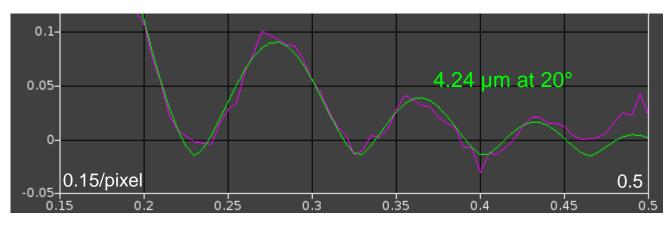
Improving Correlation-Based Approaches

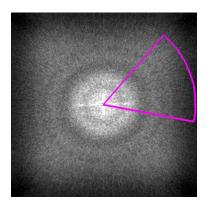
- Despite this fundamental problem, correlation methods yield good results a surprisingly large fraction of the time
- One approach is to include a few real fiducials points known to represent the same position in 3D through the whole tilt series

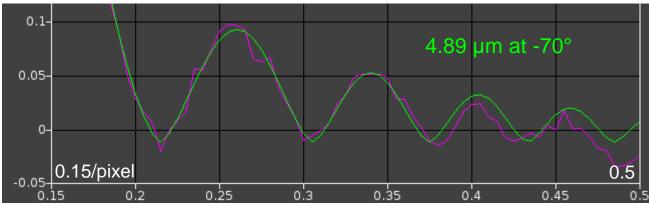
Improving Correlation-Based Approaches

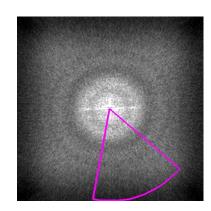
- Despite this fundamental problem, correlation methods yield good results a surprisingly large fraction of the time
- One approach is to include a few real fiducials points known to represent the same position in 3D through the whole tilt series
- A more elaborate but promising approach:
 - 1. Get initial tomogram
 - 2. Find particles of some kind and get a subvolume average
 - 3. Insert average into tomogram at particle locations
 - 4. Reproject
 - 5. Align original image locally with reprojection
 - 6. Make pseudo-fiducial model, use IMOD Tiltalign to get refined alignment that is consistent through the tilt range

Refinement with Reprojections of Particles

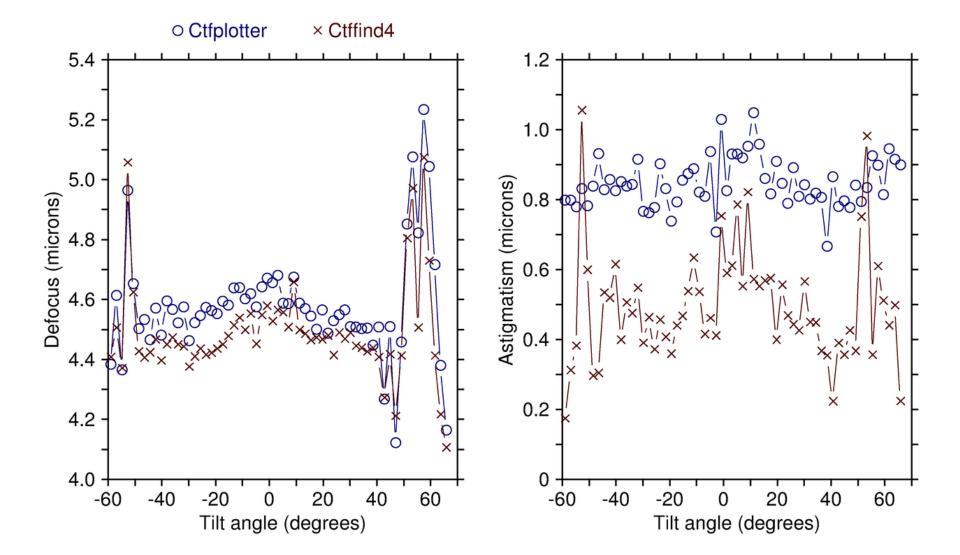

- This method can also be used to refine fiducial-based alignments
- It requires running a much bigger loop of operations
- EmClarity from Ben Himes uses essentially this approach among many other steps
 - But it is oriented toward producing aligned particles, not an aligned tomogram
 - Also takes a long time to run, so not suitable for a pipeline to produce tomograms
- Vojtěch Pražák at Oxford is developing "Flexo" following this approach
 - It may work on whatever is in the specimen (i.e., lots of ribosomes)
 - One of his goals is to incorporate it into IMOD, so it may fit within the IMOD processing stream

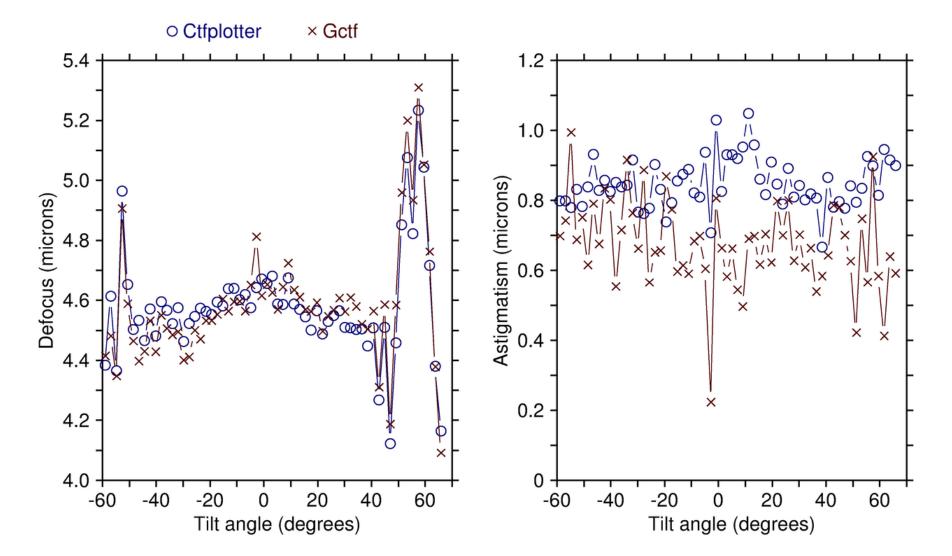

CTF Determination for Tilt Series


- To get high-resolution subvolume averages, CTF correction needs to include astigmatism
 - IMOD lacked the ability to find astigmatism until recently
 - Users wanting to find astigmatism (and phase for images from phase plates) adopted CTF programs developed for single-particle applications, principally Ctffind4 or gctf
 - These programs find astigmatism by fitting to 2D spectra and do not compensate for tilt
- The CTF determination program in IMOD was recently modernized in various ways, principally to find astigmatism and phase
 - Ctfplotter analyzes 1D spectra from rotational averaging

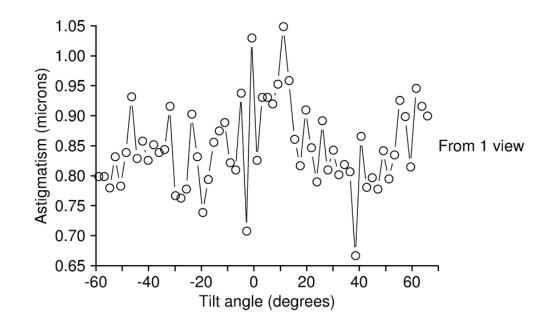

Rotational Averaging from Wedges in Spectrum

- After trying to find astigmatism from 2D spectra with Ctffind4 incorporated into Ctfplotter, I turned to analyzing 1D spectra from wedges of the FFT
- Averaging over restricted angular range (60°) shows clear changes in defocus that can still be measured well
- A series of wedge spectra are analyzed to determine astigmatism

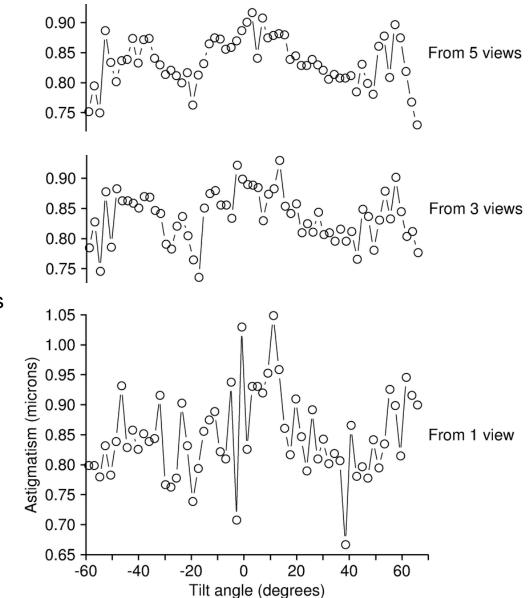



Measuring Astigmatism from Wedge Analysis is More Reliable than Fitting to 2-D Spectra with Ctffind4

- Ctffind4 4.1.8 badly underestimates astigmatism in these images
 - The consistent error in defocus seems to be a side-effect of that



Measuring Astigmatism from Wedge Analysis is More Reliable than Fitting to 2-D Spectra with Gctf


- Gctf does better than Ctffind4 on astigmatism but still underestimates it
- Defocus is also closer, but seems to have a tilt-dependent bias

Summing Spectra over 3 or 5 Views Eliminates Implausible Variations in Astigmatism Estimates

Summing Spectra over 3 or 5 Views Eliminates Implausible Variations in Astigmatism Estimates

Note that defocus is still found on each individual view

Functional Developments Come Before Implementation of Full Automation

- The new methods in Ctfplotter (1-D wedge spectra, independent summing of views for astigmatism, phase, and defocus) are an advance over established programs
- Ctfplotter can be run automatically in batch, but it requires that the proper parameters be set in advance (like everything else in IMOD batch)
 - The other CTF programs have fewer parameters to set and are probably more suitable for running blind
- Another round of development is needed to implement more automatic parameter tuning

Better, Faster, and More Automatic?

- Broader point: "Better" may require "less automatic" and also "slower", at least in the medium-term
- The path to optimal cryotomography is not a smooth uphill ascent