CHALLENGING SAMPLES

IMPROVING RELIABILITY AND ROBUSTNESS

Lindsay Baker Kay Grünewald Lab, University of Oxford

RATIONALE

SAMPLES REMAIN A SIGNIFICANT BOTTLENECK FOR CRYO-ET PROJECTS

- Samples need to be suitable for the experiment AND exhibit biologically relevant behaviour
- Significant time, effort and resources are invested in producing appropriate samples

TO SPEED UP CRYO-ET...

- Samples that are *reliably* suitable for the experiment
- Samples that robustly exhibit biologically relevant behaviour
- Get the most out of *every* sample

IMPROVING RELIABILITY AND ROBUSTNESS

CHALLENGES

- Sample preparation
 - Reducing heterogeneity (reliability)
 - Reproducing biology (robustness)
- Data acquisition and analysis
 - Maximising data acquisition sessions (reliability)
 - Identifying patterns in complex systems (robustness)
- Community wide potential

SAMPLE PREPARATION – IMPROVING HETEROGENEITY

Distribution of cells on the support is critical for cryo-ET

Unusable Usable if desperate Slightly better "Good"

But what if... "Good" = multiple grid squares have some part of a cell on them

- you're trying to target a certain region of the cell?
- you're looking for rare events?
- you want to FIB mill?
- > you have unusual cell morphologies (like neurons)?

Images courtesy of Vojta Pražák

SAMPLE PREPARATION – IMPROVING HETEROGENEITY

Can we change the arrangement of cells for different samples?

For FIB milling

For cell-cell interactions

For infection/co-culture

Advantages:

- Potential for automation
- Keep Finder grid squares empty for correlation
- Increasing efficiency for all steps (LM, FIB, TEM)

IMPROVING ROBUSTNESS

SAMPLE PREPARATION – RECAPITULATING BIOLOGY

BETTER SAMPLE PREPARATION – HOW?

- Changing surface treatments
 - Carboxylic acids (colour change)
 - Different protein coatings
 - Graphene with modifications

BETTER SAMPLE PREPARATION – HOW?

DATA ACQUISITION – GETTING THE MOST FROM EACH SAMPLE

- For the project
- For the lab
- For the community

Evaluate tilt series parameters and sample behaviour/quality

Best data collection efficiency/ quality

Shawn Q. Zheng ^{a,b,1}, Bettina Keszthelyi ^{b,1}, Eric Branlund ^{a,b,1}, John M. Lyle ^b, Michael B. Braunfeld ^{a,b}, John W. Sedat ^b, David A. Agard ^{a,b,*}

Journal of Structural Biology 157 (2007) 138-147

Web portal to an image database for high-resolution three-dimensional reconstruction Wei Dai,^{a,b} Yuyao Liang,^b and Z. Hong Zhou^{a,b,*}

Journal of Structural Biology 144 (2003) 238-245

The Caltech Tomography Database and Automatic Processing Pipeline H. Jane Ding^a, Catherine M. Oikonomou^a, Grant J. Jensen^{a,b,*}

Journal of Structural Biology 192 (2015) 279–286

A relational database for cryoEM: experience at one year and 50 000 images

Denis Fellmann, James Pulokas, Ronald A. Milligan, Bridget Carragher,* and Clinton S. Potter

Journal of Structural Biology 137 (2002) 273-282

CrossMar

Technical Note

MRC2014: Extensions to the MRC format header for electron cryo-microscopy and tomography

Anchi Cheng^{a,*}, Richard Henderson^b, David Mastronarde^c, Steven J. Ludtke^d, Remco H.M. Schoenmakers^e, Judith Short^b, Roberto Marabini^f, Sargis Dallakyan^a, David Agard^g, Martyn Winn^{h,*}

Journal of Structural Biology 192 (2015) 146–150

META DATA COLLECTION & TRACKING

Follow equipment behaviour to anticipate issues

Minimal sample loss and best data quality

Minimal downtime

DATA ANALYSIS – GETTING THE MOST FROM EACH SAMPLE

- For the project
- For the lab
- For the community

META DATA COLLECTION & TRACKING Sample preparation

META DATA COLLECTION & TRACKING Microscopy parameters

- Improved reproducibility
- Better understanding of cellular behaviours

MOVING FORWARD

- Need new approaches to sample preparation to
 - improve throughput (reliability)
 - better reproduce biology (robustness)
- Need to use available but also new resources to
 - maximise data acquisition sessions (reliability)
 - include sample preparation in identifying patterns in complex systems (robustness)
- Community wide potential
 - Encourage software developers to make meta-data more accessible
 - Work with electronic lab notebooks