

Bee Ling, Shujun, Zhi Yang, Xiaoyu, Li Deng

Collaborators:

Uttam Surana, Hong Hwa Lim, Kazu Maeshima, Sachiko Tamura, Yinyi Huang, Mdm. Loy, Ann Tran, Ping Lee Chong, Jian Shi, Désirée Bock & Martin Pilhofer

Funding: NUS, LHK fund, CBIS, YIA, MOE

A small structural-cell bio groups' perspective

- A pragmatic case for H-T tomo
- A scientific case for H-T tomo

Timeline (PhD student-driven lab)

 First 2 years for cryomicrotomy skills to start plateauing (inclusive of cryo-EM and imageprocessing training).

 Next 3+ years to do vast majority of experiments for thesis / paper. How is this time spent?

Time commitment

Ideal time commitment

Targeting is not trivial

- A pragmatic case for H-T tomo
- A scientific case for H-T tomo

Shujun CAI

Désirée Böck (ETHZ)

Martin Pilhofer (ETHZ)

Nucleosomes: > 1,000 per tomogram

Kinetochore (subcomplex): < 10 per tomogram

Cai Tong NG

Lots of interesting biology is 'heterogeneous'

Lots of interesting biology is 'heterogeneous'

New mechanisms & hypotheses

Wishlist

- Auto cryo-CLEM & target selection
- High-precision/speed stage
- Fiducialless alignment*
- Instant binning/low-pass filters

* "one-click" and indistinguishable from "manual" reconstructions

Search

New Results

ETDB-Caltech: a blockchain-based distributed public database for electron tomography

Davi R Ortega, Catherine M. Oikonomou, H. Jane Ding, Prudence Rees-Lee, Alexandria, Grant J Jensen doi: https://doi.org/10.1101/453662

This article is a preprint and has not been peer-reviewed [what does this mean?].

Abstract

Info/History

Metrics

Preview PDF

Abstract

Three-dimensional electron microscopy techniques like electron tomography provide valuable insights into cellular structures, and present significant challenges for data storage and dissemination. Here we explored a novel method to publicly release more than 11,000 such datasets, more than 30 TB in total, collected by our group. Our

EMPIAR home

Deposition

REST API

FAQ

About EMPIAR

Feedback

EMPIAR-10227

A collection of yeast cell cryo-ET data

Publication: A collection of yeast cell cryo-ET data

Gan L (b), Cai S (b), Ng C (b), Chen C

Related EMDB entry: EMD-8157

Deposited: 2018-10-03

Released: 2018-11-16

Last modified: 2018-11-21

Dataset size: 1.8 TB

Dataset DOI: 10.6019/EMPIAR-10227

Contains:

Image set

—A collection of yeast cell cryo-ET data

Category: tilt series (.mrc files) and tomograms (.rec files)

Image format: MRC

No. of images or tilt series: 1203

Current practice

```
Typical cryosection ribbons:

Gold beads spread uniformly on carbon

100 - 150 nm thick
```

One session 48 hours

3 hours to load grids & locate target positions

45 hours data collection

±60°, 2° incr (60 min / tilt series)

40 - 45 tilt series / session

Reconstruction

20 - 40 minutes, w/ Etomo batch + manual adjustment

Centre for Biolmaging Sciences (CBIS)

Vitrobot Leica UC7/FC7 (> 90% of our samples)

T12 (screening & training)
CCD camera

Krios

Falcon 2 & Greg McMullan's hack Volta phase plate Leginon & Tomo 4

