ThermoFisher SCIENTIFIC

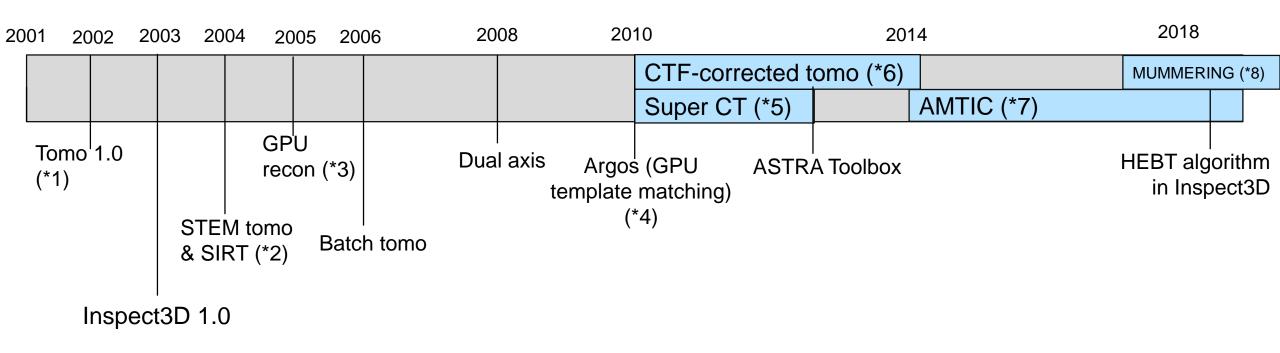
Image Processing Challenges for Continuous Tilt Tomography

Erik Franken, PhD

- 2004 : MSc, Electrical Engineering, TU Eindhoven, The Netherlands
- 2008 : PhD, Biomedical Engineering, TU Eindhoven, The Netherlands
- Since 2009: Scientist at FEI Company / Thermo Fisher Scientific
 - R&D, Advanced Technology group, subgroup Algorithms
 - Working on
 - Tomography: data acquisition and reconstruction methods
 - SPA: data processing algorithms
 - TEM automation: a.o. AutoCTF

Outline

Introduction


- Tomography activities in Thermo Fisher
- Continuous tilt tomography (CTT): towards high throughput tomography
- Continuous tilt tomography activities
 - Results from scientific community
 - CTT holder calibration
 - CTT reconstruction pipelines
 - What's next?
- Concluding remarks

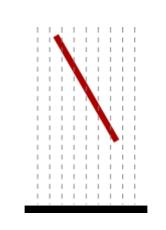
History of Tomography activities FEI / Thermo Fisher

Notes:

- (*1) Based on OpenTomo Bram Koster (Utrecht) + Martinsried
- (*2) Collaboration with Paul Midgley / Matt Weyland (Cambridge)
- (*3) Collaboration with Mercury Computer Systems

- (*5) Collaboration with Antwerp University
- (*6) Collaboration with TU Delft and LUMC
- (*7) Collaboration with TU Delft and CWI Amsterdam

(*4) Based on Martinsried work. Collaboration with Lebbink (Utrecht), Faas (LUMC), (*8) Collaboration with Antwerp University and CWI Amsterdam TU/Eindhoven


Vision: high throughput tomography

Method	Animation	Speed
 "Traditional" TEM tomography: Tilt in steps of ~1-2 degrees in start/stop mode. 		 Typically takes ~1 hour per tilt series

Continuous Tilt Tomography (CTT)

- Continuous sweep from min to max tilt angle
- Readout camera frames as fast as possible

Thermo Fisher patent US9147551B2 (Priority date 2013-06-06)

• Target $\leq 1 \min$

<u>Stage mechanics</u>

- Vibrations: high resolution is lost completely
- Runout: loss of object of interest, high resolution loss

<u>Dose-sensitive samples</u>

• Non-optimal dose distribution: 'best' images (least accumulated radiation damage) are at high tilt

Data processing

- Alignment on very noisy images is difficult.
- Reconstructions on large number of images is time-consuming

Continuous tilt tomography activities

CTT in the scientific community

SCIENTIFIC REPORTS

OPEN Rapid low dose electron tomography using a direct electron detection camera

Received: 24 June 2015 Accepted: 02 September 2015 Published: 05 October 2015

Vadim Migunov¹, Henning Ryll², Xiaodong Zhuge³, Martin Simson⁴, Lothar Strüder^{2,5}, K. Joost Batenburg^{3,6,7}, Lothar Houben¹ & Rafal E. Dunin-Borkowski¹

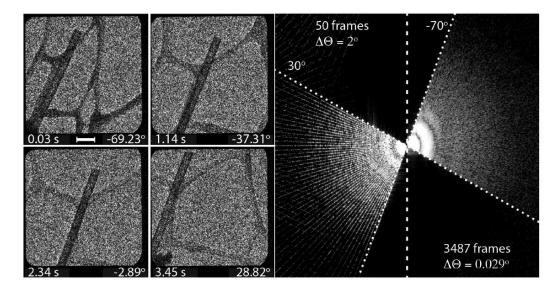


Figure 1. Continuous tilt series acquisition of a (LaCeS)_{1.2}CrS₂ nanotube on a lacey C support.

Themed Issue Paper

Fast 'Operando' electron nanotomography

L. ROIBAN, S. LI, M. AOUINE, A. TUEL, D. FARRUSSENG, T. EPICIER 💌

First published: 10 April 2017 | https://doi.org/10.1111/jmi.12557 | Cited by: 1

THE PREPRINT SERVER FOR BIOLOGY

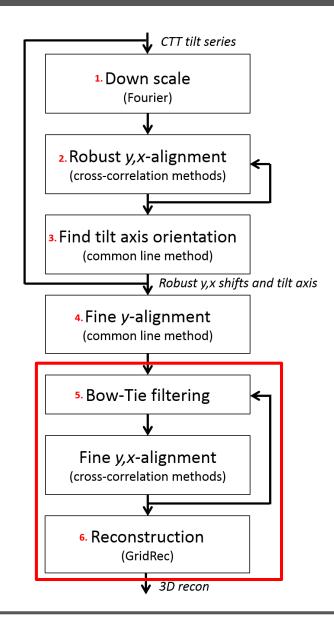
New Results

Rapid Tilt-Series Acquisition for Electron Cryotomography

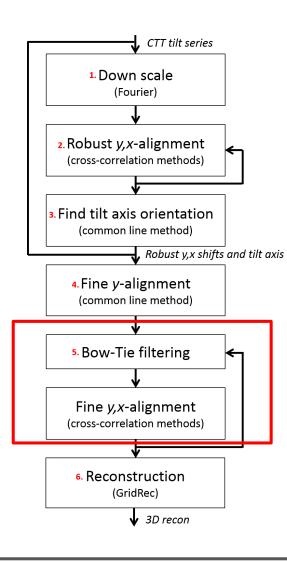
Georges Chreifi, Songye Chen, Lauren Ann Metskas, Mohammed Kaplan, Grant J. Jensen **doi:** https://doi.org/10.1101/454587

CTT data acquisition experiments @ Thermo Fisher

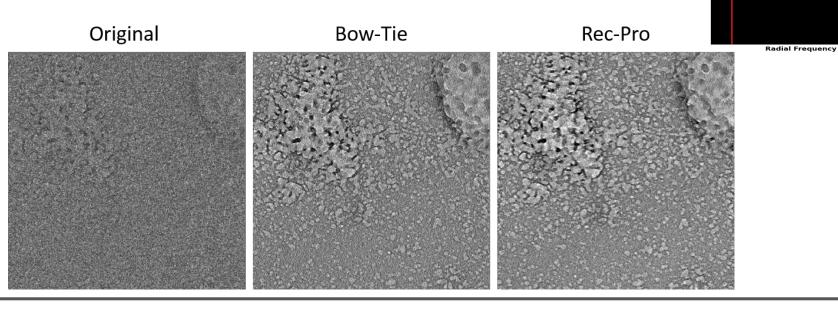
New: CTT holder calibration. Compensate for reproducible sample runout by image-beam-shift

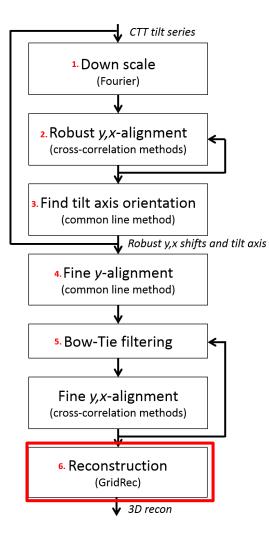

Preliminary CTT Alignment-Reconstruction pipeline

Requirements:

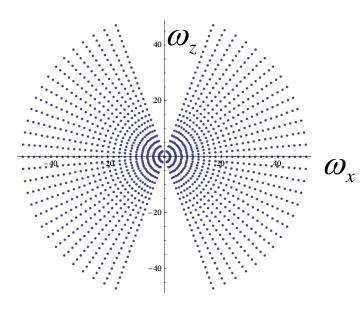

- Meant as 'live previewing' reconstruction
- Suitable for cryo-conditions
- No use of markers

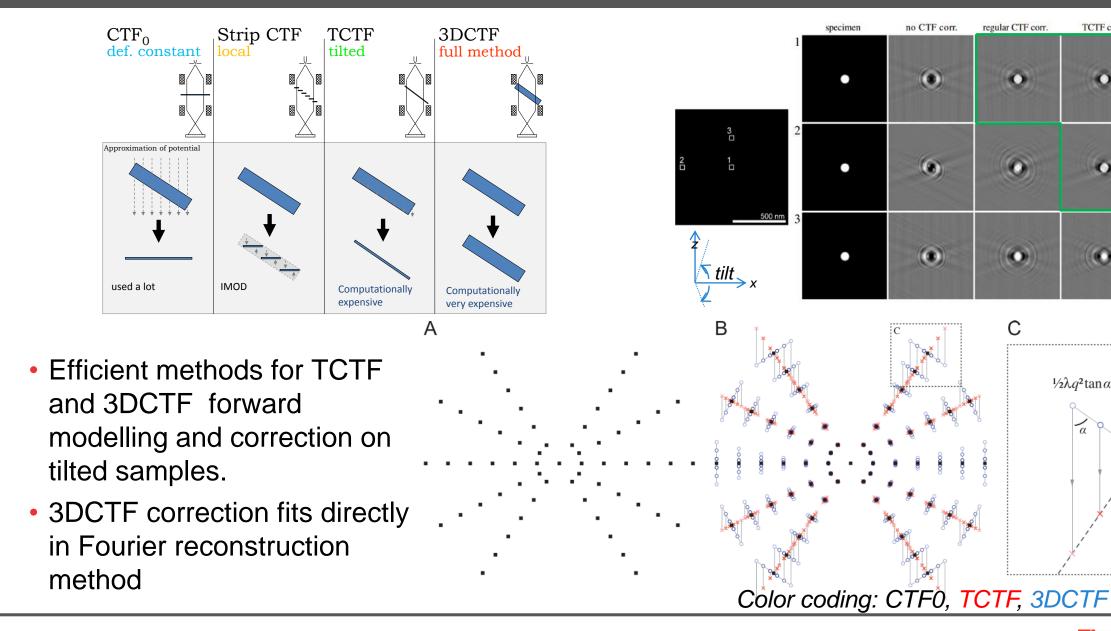
Result:


- Proof of concept pipeline & implementation (python/C++)
- Some tricks to speedup
 - Iterative multiscale alignment
 - Bow-tie filtering to mimic project-reconstruct cycle
 efficiently
 - GridRec Fourier based reconstruction
- No CTF correction yet



 Mimicking the process of projection matching by directly filtering the tilt series




- Complexity of weighted back projection techniques: O(ΘXYZ)
- FFT reconstruction techniques:
 O(Θ*XY*)+*O*(*XYZ* log(*X*))
 - → More efficient if $\Theta \gg \log(X)$
- We use GridRec

Marone, F., & Stampanoni, M. (2012). Regridding reconstruction algorithm for real-time tomographic imaging. *Journal of Synchrotron Radiation*, *19*(6), 1029– 1037. https://doi.org/10.1107/S0909049512032864

Results from CTF-corrected tomography project 2010-2014: a good fit for CTT?

 $\frac{1}{2}\lambda q^2$

TCTF corr.

0

0

O

 $\frac{1}{2}\lambda a^{2}\tan \alpha$

3DCTF corr.

0

0

0

Industry challenge	Work Package	ESR project	ESR no.	Host	Secondments	Industry involvement
In situ imaging of industrial processes and reactions at the atomic level 1 Data acquisition, electron and X-ray tomography (WP1) <i>New modalities, atomic</i> resolution, adaptive acquisition	Time resolved omni-directional scattering tomography	ESR1	PSI	XNOVO/ CWI/ETH	Xnovotech	
	Novel developments in high resolution TEM tomography	ESR2	UA	DENSsolutions NanoMEGAS/FEI EO	CORENS CONFERNMENT	
	4D dynamic tomographic acquisition driven by smart image quantification	ESR3	ULUND	Aluinvent/PSI	ALUINVENT	
Easily accessible, fast and robust data handling workflow 2		Analysis pipeline automatization in relation to materials design in 3D	ESR4	UCPH	4Quant/PSI	4Quant
	High Performance Image, Volume, and Movie Analysis	ESR5	UPCH	BSC	BSC	
Versatile, fast and scalable reconstruction for gigavoxel volumes 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Ultra-fast 3D reconstruction	ESR6	CWI	FEI EO/PSI/UA	part of Thermo Fisher Scientific	
	3D atomic resolution reconstruction methods	ESR7	UA	FEI EO/EMAT	part of Thermo Fisher Scientific	
	Advanced Algorithms for Data Reconstruction	ESR8	BAM	Vision in X		
	Three-dimensional inversion of ptychographic tomography data	ESR9	DTU	XNOVO/ULUND	Xnovotech	
Unbiased identification and representation for non-expert application 4	2D/3D multimodal analysis for X-ray security applications	ESR10	AP2K	DTU	ACCENT PRO 2000	
	Physical model priors for tomogram segmentation	ESR11	DTU	Tetra Pak/FEI SAS	ter a Partie Lander	
	Segmentation from projections	ESR12	DTU	FEI SAS	FEI prof Themo Robot Scientific	
	Multiscale quantification of damage in composite structures	ESR13	UoM	LM/FEI SAS		
Extraction of quantitative physical parameters 5 4D modelling (WP5)	Modelling (WP5)	Reactive transport in porous media: A multi-scale imaging and modelling approach	ESR14	CNRS	Aluinvent/PSI/UA UCPH/Ubx	ALUINVENT
	Multiscale segmentation and modelling of composite materials	ESR15	OCV	DTU		

MUMMERING project

- MUMMERING = MUltiscale, Multimodal and Multidimensional imaging for EngineeRING
- Thermo Fisher hosts 6 secondments ('internships') of PhD projects.
- 3 projects with secondments in Eindhoven:
 - ESR2 @ EMAT : Fast 4D tomography & multimode tomography
 - ESR6 @ CWI: Ultra-fast 3D reconstruction for Continuous Tilt Tomography
 - ESR7 @ UA: 3D Atomic reconstruction methods
- 3 projects with secondments in Bordeaux

Conclusions

- Point of view
 - High throughput tomography is crucial
 - Continuous Tilt Tomography and related schemes are key to accelerate data acquisition
 - Tailored fast reconstruction approaches and automated algorithms are needed
 - These needs are wider than Life Science only
- Open for questions / remarks / suggestions!
- Open to discuss collaborations!

