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Motivation

How can we use previously determined structures to aid in
particle picking and micrograph assessment?

Two examples:

1) Small protein bound to large complex
» Microtubule bound to a kinesin dimer

2) Previously known structures studied as a co-complex
» Nucleosomes bound to chromatin remodeling factor



Example #1: Small protein bound to larger complex

Kinesin bound to microtubule

NIMANI4




Example #2: Known structures in complex together
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Motivation

How can we use previously determined structures to aid in
particle picking and micrograph assessment?

‘Super-resolution’ or ‘denoising’ approaches
using neural networks

1. Generative adversarial networks

2. Conditional adversarial networks
3. Application to single particle cryo-EM



Generative adversarial networks (‘GANs’)
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httpy/ fwwwslideshare.net/xavigiro/deep-learning-for-computer-
vision-generative-models-and-adversarial-training-upc-2016



http://slideshare.net/xavigiro

Generative adversarial networks (‘GANs’)
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Conditional adversarial networks (‘cGANSs’)
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Learn a mapping from observed image x and
random noise vector z, toy, G: {x,z} = v

Isola et al. arXiv:1611.07004



Conditional adversarial networks (‘cGANSs’)

U-net architecture for generator
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Isola et al. arXiv:1611.07004



Conditional adversarial networks (‘cGANSs’)

Application of algorithnm (‘pix2pix’) to different image-to-image translations

Labels to Street Scene Labels to Facade BW to Color
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Isola et al. arXiv:1611.07004




Conditional adversarial networks (‘cGANSs’)

Application of algorithnm (‘pix2pix’) to different image-to-image translations

edges2cats
TOOL INPUT OUTPUT
eraserQ
PIX2pixX
INPUT OUTPUT
PIX2piX

Isola et al. arXiv:1611.07004




Conditional adversarial networks: galaxyGAN
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Training: lesting:
-4,650 galaxy images with  -Noise added images that had not
noise added been seen previously by cGAN

Schawinski et al. MNRAS: Letters, 2017



Conditional adversarial networks: galaxyGAN

original degraded GAN recovered deconvolved

PSF=2.5", 100

Training: lesting:
-4,650 galaxy images with  -Noise added images that had not
noise added been seen previously by cGAN

Schawinski et al. MNRAS: Letters, 2017



Implementing conditional adversarial networks for cryo-EM

Data preparation GAN training
. - Generator . )
Raw particle | | r-----=------>- Recovered image
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Adaptation notes:

Tensorflow
Residual blocks
Exponential loss function



Implementing conditional adversarial networks for cryo-EM

Generator (U-net architecture):

256%256 x1
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Test #1: Beta-galactosidase (EMPIAR10061)

Data preparation GAN training
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Training notes:

10,000 particle / projection pairs (randomly selected)
256 x 256 (0.997 A/pix)
~10 hours on 1xGTX1080Ti GPU



Test #1: Beta-galactosidase (EMPIAR10061)

Input particle GAN output Ground truth FSC FSC=0.5
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Testing notes:

Different particles than training set
<1 sec/particle to generate with GTX1080Ti GPU




Test #2: TRPV1 (EMPIAR10005)

Data preparation

Raw particle

3D structure

A ilane

—————————

Project according P . o .
to Euler angles of Original image Original image

particle

Low pass filter to 10A
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Training notes:

10,000 particle / projection pairs (randomly selected)
256 x 256 (1.22 A/pix)
~10 hours on 1xGTX1080Ti GPU



Test #2: TRPV1 (EMPIAR10005)

Input particle GAN output Ground tru FSC FSC=0.5
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Test #2: TRPV1 (EMPIAR10005)

FSC b/w raw particle
Ground truth & ground truth FSC=0.5

Input particle
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Determining FSC curve between raw particles and ground truth




Test #3: Training on Beta-Gal & TRPV1 combined

Data preparation GAN training
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Training notes:

20,000 particle / projection pairs (randomly selected)
(10,000 from each TRPV1 & Beta-Gal)

256 x 256 (0.997 A/pix)

~20 hours on 1xGTX1080TiI GPU




Test #3: Training on Beta-Gal & TRPV1 combined

FSC FSC=0.5
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Test #4: Training on noise with TRPV1

Data preparation

Gaussian noise

3D structure
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to Euler angles of Original image Original image
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Low pass filter to 10A
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Training notes:

1,000 particle / projection pairs (randomly selected)
256 x 256 (1.22 A/pix)
~71 hours on 1xGTX1080Ti GPU



Test #4: Training on noise with TRPV1
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Example #1: Small protein bound to larger complex

Kinesin bound to microtubule

NIMANI4




Example #1: Small protein bound to larger complex

Data preparation GAN training
4 - G t - ==
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Training notes:

Synthetic data

10,000 particle / projection pairs (random Euler angles)
256 x 256 (4.56 A/pix)

~10 hours on 1xGTX1080Ti GPU
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Example #2: Known structures in complex together
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Example #2: Known structures in complex together

CHD1 Nucleosome
(PDB 3MWY) (PDB 1AOI)
Ground truth Simulated particle Ground truth Simulated particle

(sigma=30) (sigma=30)
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Example #2: Known structures in complex together

Data preparation

Synthetic Particle

3D structures
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Project according P . o .
to Euler angles of Original image Original image

particle
u Low pass filter to 10A ) u

Training notes:

15,000 particle / projection pairs (randomly selected)
(10,000 from nucleosome, 5,000 from CHD1)

256 x 256 (1 A/pix)

~20 hours on 1xGTX1080Ti GPU




Example #2: Known structures in complex together

Simulated particle
CHD1-Nuc

GAN output Ground truth




Example #2: Known structures in complex together

Back projection of GAN particles based on riginal Euler angles of ground truth

FSC between GAN 3D
and ground truth
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Conclusions

e cCGANSs are able to recover information from raw cryo-EM
particles

e GAN outputs could aid structure determination by
providing initial Euler angle assignment

e Potentially able to provide integrity information on co-
complexes where individual components have known
structures

Next steps

e Continue synthetic data testing of kinesin microtubule,
then apply to Liu et al. 2017 "FINDKIN’ program
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