

Denoising cryo-EM data with conditional generative adversarial networks

Michael Cianfrocco Life Sciences Institute Department of Biological Chemistry University of Michigan

Motivation

How can we use previously determined structures to aid in particle picking and micrograph assessment?

Two examples:

- 1) Small protein bound to large complex
 - Microtubule bound to a kinesin dimer
- 2) Previously known structures studied as a co-complex
 - Nucleosomes bound to chromatin remodeling factor

Kinesin bound to microtubule

Motivation

How can we use previously determined structures to aid in particle picking and micrograph assessment?

'Super-resolution' or 'denoising' approaches using neural networks

- 1. Generative adversarial networks
- 2. Conditional adversarial networks
- 3. Application to single particle cryo-EM

Generative adversarial networks ('GANs')

http://www.slideshare.net/xavigiro/deep-learning-for-computervision-generative-models-and-adversarial-training-upc-2016

Generative adversarial networks ('GANs')

https://towardsdatascience.com

Learn a mapping from observed image x and random noise vector z, to y, G : $\{x, z\} \rightarrow y$

U-net architecture for generator

Application of algorithm ('pix2pix') to different image-to-image translations

Application of algorithm ('pix2pix') to different image-to-image translations

Conditional adversarial networks: galaxyGAN

Training: noise added Testing:

-4,550 galaxy images with -Noise added images that had not been seen previously by cGAN

Schawinski et al. MNRAS: Letters, 2017

Conditional adversarial networks: galaxyGAN

Training: -4,550 galaxy images with noise added

Testing: -Noise added images that had not been seen previously by cGAN

Schawinski et al. MNRAS: Letters, 2017

Implementing conditional adversarial networks for cryo-EM

Adaptation notes:

Tensorflow Residual blocks Exponential loss function

Implementing conditional adversarial networks for cryo-EM

Generator (U-net architecture):

image

Discriminator:

Test #1: Beta-galactosidase (EMPIAR10061)

Training notes:

10,000 particle / projection pairs (randomly selected) 256 x 256 (0.997 Å/pix) ~10 hours on 1xGTX1080Ti GPU

Test #1: Beta-galactosidase (EMPIAR10061)

Testing notes: Different particles than training set <1 sec/particle to generate with GTX1080Ti GPU

Test #2: TRPV1 (EMPIAR10005)

Training notes:

10,000 particle / projection pairs (randomly selected) 256 x 256 (1.22 Å/pix) ~10 hours on 1xGTX1080Ti GPU

Test #2: TRPV1 (EMPIAR10005)

Input particle

GAN output

Ground truth

Test #2: TRPV1 (EMPIAR10005)

Determining FSC curve between raw particles and ground truth

Test #3: Training on Beta-Gal & TRPV1 combined

Training notes:

20,000 particle / projection pairs (randomly selected) (10,000 from each TRPV1 & Beta-Gal) 256 x 256 (0.997 Å/pix) ~20 hours on 1xGTX1080Ti GPU

Test #3: Training on Beta-Gal & TRPV1 combined

Input particle

GAN output

Ground truth

FSC FSC=0.5

27 Å

Test #4: Training on noise with TRPV1

Training notes:

1,000 particle / projection pairs (randomly selected) 256 x 256 (1.22 Å/pix) ~1 hours on 1xGTX1080Ti GPU

Test #4: Training on noise with TRPV1

Input particle

GAN output

Ground truth

81 Å

Kinesin bound to microtubule

Training notes:

Synthetic data

10,000 particle / projection pairs (random Euler angles) 256 x 256 (4.56 Å/pix)

~10 hours on 1xGTX1080Ti GPU

Training notes:

15,000 particle / projection pairs (randomly selected) (10,000 from nucleosome, 5,000 from CHD1) 256 x 256 (1 Å/pix) ~20 hours on 1xGTX1080Ti GPU

Back projection of GAN particles based on original Euler angles of ground truth

Conclusions

- cGANs are able to recover information from raw cryo-EM particles
- GAN outputs could aid structure determination by providing initial Euler angle assignment
- Potentially able to provide integrity information on cocomplexes where individual components have known structures

Next steps

• Continue synthetic data testing of kinesin microtubule, then apply to Liu et al. 2017 'FINDKIN' program

Acknowledgements

University of Michigan

Zhenyu Tan Min Su

Ce Zhang Hantian Zhang Kevin Schawinski

