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Particle picking
Micrograph (X) Particle coordinates

?



Particle picking
Micrograph (X) Particle coordinates

?

Region scores (g✶X)

Given a scoring function, g, 
convolve it over the micrograph, X, 
to get per region scores

Extract coordinates by greedily 
selecting regions and removing 
nearby regions (non-maximum 
suppression)



Particle picking
Micrograph (X) Particle coordinates

?

Region scores (g✶X)

What should g be?



Convolutional neural network
● Learn parameters, ᶚ, of g from data

             Positives: XP , y=1 , ᵨP

      Negatives: XN , y=0 , 1 - ᵨP

      Loss function L

             argmin ᵨPE[L(g(x,ᶚ),1)] + (1 - ᵨP)E[L(g(x,ᶚ),0)]

● Problem: learning requires large amounts of labeled examples
○ Costly for a researcher to label enough particles
○ Can we learn ᶚ from a small amount of labeled data and the rest of the unlabeled data?

ᶚ XP XN



Positive-unlabeled classification
● Learn parameters, ᶚ, from positive, XP, and unlabeled, XU, data
● Unlabeled data contains both positive and negative examples
● Loss function: find parameters that minimize this function of the training data
● Assume we know ᵨP Naive: 

    ᵨPE[L(g(x),1)] + (1 - ᵨP)E[L(g(x),0)]

Unbiased estimator (du Plessis et al. 2016):
    ᵨPE[L(g(x),1)] - ᵨPE[L(g(x),0)] + E[L(g(x),0)]

Non-negative estimator (Kiryo et al. 2017):
    ᵨPE[L(g(x),1)] + max{ 0, E[L(g(x),0)] - ᵨPE[L(g(x),0)] }

Generalized expectation criteria (KL) (Mann and McCallum 2010):
    E[L(g(x),1)] + ᶝ KL(ᵨP, E[g(x)])

XP XU

XP XP XU
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GE-binomial: a better GE criteria for 
positive-unlabeled learning with SGD
● Problem: neural network needs to be trained with minibatch stochastic 

gradient descent (SGD) - need to estimate gradient using samples of data
○ E[L(g(x),1)] + ᶝ KL(ᵨP, E[g(x)])

● The number of positive data points, P, in an N data point minibatch follows the 
binomial distribution with probability of success ᵨP 

○ pk = binomial(N, ᵨP)

● Classifier predictions, g(xi) where xi are unlabeled data points in the 
minibatch, also define a distribution over the number of positives - 
approximate this with a normal distribution

○ ᶞ = ᵑg(xi)  and  ᶥ2 = ᵑg(xi)(1-g(xi))
○ let qk be the discretized probability of k positives given by this distribution

● Define a new GE criteria (GE-binomial) using these distributions: ᵑqklog(pk)
E[L(g(x),1)] + ᵑqklog(pk)

XP XU

XP



CryoEM datasets for evaluation
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GE-binomial outperforms other positive-unlabeled 
learning objectives on cryoEM particle classification

PN = naive
NNPU = non-negative estimator (Kiryo et al. 2017)
GE-KL = GE criteria with KL-divergence

Area under the precision-recall curve on the test 
set for models trained with subsets of positives 
from the training set

recall = TP/(TP + FN)
precision = TP/(TP + FP)

https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html



Hybrid classifier-autoencoder model

ZX X’

Encoder

Decoder (Deconvolutional NN)

GE-binomial and autoencoder:
E[L(g(x),1)] + ᵑqklog(pk) + a||x - x’||2 
XP

reconstruction
error

GE-binomial 
loss



Including a decoder and reconstruction error 
improves generalization with few training examples

PN = naive
NNPU = non-negative estimator (Kiryo et al. 2017)
GE-KL = GE criteria with KL-divergence

Adding a decoder (a = N/10) can further 
improve classification performance when very 
few labeled data points are available



Topaz particle picking pipeline

Train classifier with positive and unlabeled 
micrograph regions

Score micrograph regions and extract 
predicted particle coordinates



Structure determination with predicted particles
● 2 new datasets: EMPIAR-10025 

(T20S proteasome) and 
EMPIAR-10028 (80S ribosome)

● 20% of micrographs held out for 
testing particle detection

● 1000 labeled training particles
● Predicted particles selected at 

decreasing score thresholds
● Ab-initio structure determination 

and refinement performed with 
each particle set with cryoSPARC

● No post-processing of predicted 
particles (no 2D/3D classification)

Test set 
micrographs

Training set 
micrographs

All micrographs

1000 labeled 
particles

Fit classifier

Predict 
particles

Predict 
particles

Published particles 
(“ground truth”)

Classification metrics 
(precision-recall)

Ab-initio structure determination

Refinement

Topaz

cryoSPARC



Example test set micrographs show extra predicted particles are true particles

Red: predicted particles, Blue: published particles 

EMPIAR-10025 EMPIAR-10028



Models detect test set particles with good average precision scores
EMPIAR-10025 EMPIAR-10028 recall = TP/(TP + FN)

precision = TP/(TP + FP)

https://en.wikipedia.org/wiki/Precision_and_recall#/media/File:Precisionrecall.svg



2.8 Å reconstruction of EMPIAR-10025

Sphericity = 0.988
Global resolution = 2.99 Å
Number of particles = 49954 

Published particle set

Sphericity = 0.982
Global resolution = 2.83 Å
Number of particles = 160658 

Predicted particle set
(best threshold)

Predicted 3D structure
(without dose weighting)



3.0 Å reconstruction of EMPIAR-10028

Sphericity = 0.958
Global resolution = 3.05 Å
Number of particles = 105247 

Published particle set

Sphericity = 0.974
Global resolution = 3.00 Å
Number of particles = 180723 

Predicted particle set
(best threshold) Predicted 3D structure

** EM-map challenge best resolution 3.10 Å



Predicted particles are well-ranked
EMPIAR-10025 EMPIAR-10028

3d reconstruction
resolution

2d class
quantification



2d class averages with decreasing particle threshold
EMPIAR-10025 EMPIAR-10028

Low
er threshold -> increasing num

ber of particles



Summary
1. We proposed the GE-binomial loss function and showed that neural network classifiers trained to 

minimize this loss on positive and unlabeled micrograph regions outperform classifiers trained 
with other positive-unlabeled learning objective functions on 2 challenging cryoEM datasets 
(Shapiro-lab, EMPIAR-10096)

2. We showed that creating a joint training scheme in which the classifier is trained together with a 
decoder to form a hybrid classifier+autoencoder can further improve performance when few 
labeled data points are available

3. We developed an object detection pipeline for picking particles using classifiers trained from positive 
and unlabeled examples.

4. We showed that particles predicted by Topaz (with only 1000 labeled training examples and no 
postprocessing) give state-of-the-art reconstructions on 2 additional datasets (EMPIAR-10025, 
EMPIAR-10028)

Topaz - our implementation of this particle picking pipeline - is available at https://github.com/tbepler/topaz

Manuscript in preparation - preprint can be found at https://arxiv.org/abs/1803.08207

https://github.com/tbepler/topaz
https://arxiv.org/abs/1803.08207
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