Automatic particle picking with minimal supervision using positive-unlabeled neural networks

ts Tristan Bepler Berger Lab, MIT NYSBC Deep Learning Workshop April 10, 2018

SIMONS ELECTRON MICROSCOPY CENTER

Single-particle cryo-electron microscopy

Particle picking

2D averages

3D reconstruction (not the same protein)

Particle picking

Micrograph (X)

Particle coordinates

Particle picking

Given a scoring function, *g*, convolve it over the micrograph, *X*, to get per region scores Extract coordinates by greedily selecting regions and removing nearby regions (non-maximum suppression)

Particle picking

What should *g* be?

Convolutional neural network

• Learn parameters, θ , of *g* from data

Positives: X_P , y=1 , π_P

Negatives: X_N , y=0 , 1 - π_P

Loss function *L*

 $\underset{\theta}{\operatorname{argmin}} \begin{array}{l} \pi_{\mathsf{P}} \mathsf{E}[L(g(\mathsf{x},\theta),1)] + (1 - \pi_{\mathsf{P}}) \mathsf{E}[L(g(\mathsf{x},\theta),0)] \\ X_{\mathsf{N}} \end{array}$

- Problem: learning requires large amounts of labeled examples
 - Costly for a researcher to label enough particles
 - Can we learn θ from a small amount of labeled data and the rest of the unlabeled data?

Positive-unlabeled classification

- Learn parameters, θ , from positive, X_{p} , and unlabeled, X_{U} , data
- Unlabeled data contains both positive and negative examples

Naive:

- Loss function: find parameters that minimize this function of the training data
- Assume we know π_P

 $\pi_{P} \mathbb{E}[L(g(\mathbf{x}), 1)] + (1 - \pi_{P}) \mathbb{E}[L(g(\mathbf{x}), 0)]$ Unbiased estimator (du Plessis et al. 2016): $\pi_{\rm P} \mathbb{E}[L(g({\rm X}),1)] - \pi_{\rm P} \mathbb{E}[L(g({\rm X}),0)] + \mathbb{E}[L(g({\rm X}),0)]$ X_{D} X_{p} Χ., Non-negative estimator (Kiryo et al. 2017): $\pi_{P} \mathbb{E}[L(g(x), 1)] + \max\{0, \mathbb{E}[L(g(x), 0)] - \pi_{P} \mathbb{E}[L(g(x), 0)]\}$ X Generalized expectation criteria (KL) (Mann and McCallum 2010): $\mathsf{E}[L(g(\mathsf{x}),1)] + \lambda \mathsf{KL}(\pi_{P}, \mathsf{E}[g(\mathsf{x})])$

GE-binomial: a better GE criteria for positive-unlabeled learning with SGD

- Problem: neural network needs to be trained with **minibatch stochastic** gradient descent (SGD) - need to estimate gradient using samples of data
 - $\circ \quad \begin{array}{c} \mathsf{E}[L(g(\mathsf{x}),1)] + \lambda \\ \mathsf{KL}(\pi_{\mathsf{P}}, \, \mathsf{E}[g(\mathsf{x})]) \\ \mathsf{X} \\ \end{array}$
- The number of positive data points, P, in an N data point minibatch follows the **binomial distribution with probability of success** π_{P}
 - $p_k = binomial(N, \pi_P)$
- Classifier predictions, g(x_i) where x_i are unlabeled data points in the minibatch, also define a distribution over the number of positives approximate this with a normal distribution

• $\mu = \Sigma g(\mathbf{x}_i)$ and $\sigma^2 = \Sigma g(\mathbf{x}_i)(1-g(\mathbf{x}_i))$

- \circ let q_k be the discretized probability of k positives given by this distribution
- Define a **new GE criteria (GE-binomial)** using these distributions: $\Sigma q_k \log(p_k) = E[L(g(x), 1)] + \Sigma q_k \log(p_k) = \sum_{X_p} \sum_{k=1}^{N} \sum_{k=1}^{N}$

CryoEM datasets for evaluation

GE-binomial outperforms other positive-unlabeled learning objectives on cryoEM particle classification

	E	MPIAR-1009	6	Shapiro-lab			
Model	10	100	1000	10	100	1167	
classifier							
PN	$0.072\ {\pm}0.029$	$0.187\ {\pm}0.038$	-	$0.012\ {\pm}0.005$	$0.036\ {\pm}0.012$	-	
NNPU	$0.101\ {\pm}0.035$	$0.226\ {\pm}0.033$	-	$0.014\ {\pm}0.008$	$0.039\ {\pm}0.013$	-	
GE-KL	$0.072\ {\pm}0.035$	$0.240\ {\pm}0.043$	-	$0.010\ {\pm}0.005$	$\textbf{0.062}\ \pm \textbf{0.017}$	-	
GE-binomial	$\textbf{0.155} \pm \textbf{0.044}$	$\textbf{0.258} \pm \textbf{0.040}$	$\textbf{0.392} \pm \textbf{0.006}$	$\textbf{0.020} \pm \textbf{0.008}$	$0.061\ {\pm}0.010$	$\textbf{0.150} \pm \textbf{0.008}$	
Area under the precision-recall curve on the test set for models trained with subsets of positives from the training set				recall = TP/(TP + FN) precision = TP/(TP + FP)			
PN = naive NNPU = non-nega	tive estimator (F	Kirvo et al. 2017	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $				

GE-KL = GE criteria with KL-divergence

Recall https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html

0.0 +

02

Hybrid classifier-autoencoder model

Decoder (Deconvolutional NN)

Including a decoder and reconstruction error improves generalization with few training examples

	EMPIAR-10096			Shapiro-lab		
Model	10	100	1000	10	100	1167
classifier						
$_{\rm PN}$	$0.072\ {\pm}0.029$	$0.187\ {\pm}0.038$	-	$0.012\ {\pm}0.005$	$0.036\ {\pm}0.012$	-
NNPU	$0.101\ {\pm}0.035$	$0.226\ {\pm}0.033$	-	$0.014\ {\pm}0.008$	$0.039\ {\pm}0.013$	-
GE-KL	$0.072\ {\pm}0.035$	$0.240\ {\pm}0.043$	-	$0.010\ {\pm}0.005$	$\textbf{0.062} \pm \textbf{0.017}$	-
GE-binomial	$\textbf{0.155} \pm \textbf{0.044}$	$\textbf{0.258} \pm \textbf{0.040}$	$\textbf{0.392}\ \pm \textbf{0.006}$	$\textbf{0.020} \pm \textbf{0.008}$	$0.061\ {\pm}0.010$	$\textbf{0.150} \pm \textbf{0.008}$
+autoencoder						
GE-binomial	$0.260\ {\pm}0.016$	$0.324\ {\pm}0.017$	$0.368\ {\pm}0.013$	$0.029\ {\pm}0.011$	$0.078\ {\pm}0.018$	$0.120\ {\pm}0.006$

PN = naive NNPU = non-negative estimator (Kiryo et al. 2017) GE-KL = GE criteria with KL-divergence Adding a decoder (a = N/10) can further improve classification performance when very few labeled data points are available

Topaz particle picking pipeline

Train classifier with positive and unlabeled micrograph regions

Score micrograph regions and extract predicted particle coordinates

predictions using non-maximum suppression

Structure determination with predicted particles

- 2 new datasets: EMPIAR-10025 (T20S proteasome) and EMPIAR-10028 (80S ribosome)
- 20% of micrographs held out for testing particle detection
- 1000 labeled training particles
- Predicted particles selected at decreasing score thresholds
- Ab-initio structure determination and refinement performed with each particle set with cryoSPARC
- No post-processing of predicted particles (no 2D/3D classification)

Example test set micrographs show extra predicted particles are true particles EMPIAR-10025 EMPIAR-10028

Red: predicted particles, Blue: published particles

EMPIAR-10025 EMPIAR-10028 recall = TP/(TP + FN)1.0 1.0 average precision score = 0.5787 average precision score = 0.7709 precision = TP/(TP + FP)0.8 0.8 relevant elements false negatives true negatives Precision Precision Precision 6.0 0 0 0 0.2 0.2 true positives false positives 0.0 0.0 0.2 0.2 0.4 0.6 0.8 0.4 0.6 0.8 1.0 0.0 1.0 0.0 Recall Recall 1.0 1.0 recall recall 0 0 precision precision F1 F1 0.8 0.8 selected elements 0.6 0.6 Score Score How many selected How many relevant items are relevant? items are selected? 0.4 0.4 Precision = Recall 0.2 0.2 0.0 0.0 2 -15-2 6 -10-5 0 5 -8 0 Threshold Threshold

Models detect test set particles with good average precision scores

https://en.wikipedia.org/wiki/Precision_and_recall#/media/File:Precisionrecall.svg

2.8 Å reconstruction of EMPIAR-10025

(without dose weighting)

Predicted 3D structure

3.0 Å reconstruction of EMPIAR-10028

** EM-map challenge best resolution 3.10 Å

Predicted particles are well-ranked

2d class averages with decreasing particle threshold

EMPIAR-10028

EMPIAR-10025

Summary

- We proposed the GE-binomial loss function and showed that neural network classifiers trained to minimize this loss on positive and unlabeled micrograph regions outperform classifiers trained with other positive-unlabeled learning objective functions on 2 challenging cryoEM datasets (Shapiro-lab, EMPIAR-10096)
- 2. We showed that creating a joint training scheme in which the classifier is trained together with a decoder to form a **hybrid classifier+autoencoder can further improve performance** when few labeled data points are available
- 3. We developed an object detection pipeline for picking particles using classifiers trained from positive and unlabeled examples.
- We showed that particles predicted by Topaz (with only 1000 labeled training examples and no postprocessing) give state-of-the-art reconstructions on 2 additional datasets (EMPIAR-10025, EMPIAR-10028)

Topaz - our implementation of this particle picking pipeline - is available at https://github.com/tbepler/topaz

Manuscript in preparation - preprint can be found at <u>https://arxiv.org/abs/1803.08207</u>

Acknowledgements

Massachusetts Institute of Technology

- Bonnie Berger
- Andrew Morin
- Hoon Cho
- Tommi Jaakkola

New York Structural Biology Center

- Alex Noble
- Bridget Carragher
- Clint Potter

Columbia University

- Julia Brasch
- Larry Shapiro