Challenges in deep learning applications to CryoEM data

Muyuan Chen 2018-04

Business model

Typical deep learning applications

AutoDraw

CryoEM applications

Datasets

"Noise" & artifacts

We are only identifying a small fraction of cellular features...

- 'Junk'
- High contrast objects
- Crowding
- CTF

Rotational-translation invariance

- Most biological features have random rotationtranslation in CryoEM data
- Neural networks (biological and computational) are intrinsically bad at dealing with rotations....

Which 'F' is flipped?

Rotational-translation invariance

- Most biological features have random rotationtranslation in CryoEM data
- Neural networks (biological and computational) are intrinsically bad at dealing with rotations....

This is even harder in 3D....

Rotational-translation invariance

- Inside deep learning framework
 - Pooling
 - Data augmentation
 - Max-out
 - Transforming autoencoder

- External methods
 - Starting from rotational invariants (spherical harmonics, bi-spectrum etc.)
 - Pre-align images

Training

Hyper-parameter selection

- How good are the default parameters?
- Are they robust to image size, dataset size, feature shape, noise level?
- When does training converge and how do we know it?

Overfitting

Dream of membranes...

Overfitting is a problem but usually not too bad...

Overfitting

Effect of different training sets

Overfitting

Overfitting and regularization

- Noise and rotational invariance helps..
- Selection of positive/negative training set
- Do we need a validation set and how big should it be?
- How does regularization affect convergence?

1 error out of 5 particles

4 errors out of 8 particles

Only use confident regions for training...

Uncertain is an option..

Other problems...

Memory limitation

- Heterogeneity problems
 subtomogram, single particle
- 3D feature annotation
- Nvidia GTX 1080 : 8GB memory
- One fully connected network from a 64x64x64 volume to a layer of 2048 units: at float32: 64x64x64x2048x4=7.2GB The actual cost is much higher due to optimization etc..

Unsupervised methods

- Generative Adversarial Network?
 - Rotational invariant
 - 3D with missing wedge
- Look into the black box...

Solutions?

- What is the biological question?
- Solving constrained and well-defined problems is much easier...
 - Particle picking: two-step solution
 - Tomogram annotation: making figures? SPT? statistical conclusion?
 - Heterogeneity limited scale, region.. separate from alignment
- Combine with conventional methods
 - Alignment, rotational invariants, PCA ...
- It is okay to have some manual intervention....

Future deep learning applications

- Identification and classification of structures in cells
- Heterogeneity analysis in SPR and SPT
- Protein sequence-structure relationship

Acknowledgement

- Data providers:
 - Wei Dai, Center for Integrative Proteomics Research, Rutgers University
 - Stella Ying Sun, Stanford University
- Pls:
 - Steven Ludtke, Baylor College of Medicine
- NIH grants:
 - R01GM080139, P41GM103832

Thank you