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Template Matching

• Query window f [n,m], template g [n,m], cross-correlation:1
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What Templates?

• Simulated projections of particles

• Class averages from micrograph2

• Difference of Gaussians3, disks4

2Scheres, 2015
3Voss et al., 2009
4Langlois et al., 2014
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• Randomly select reference windows from micrograph

Some will contain particles, others not

• What are correlations of query window with references?
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Window Score

• Count number k of correlations above threshold
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k = 30

µ -6.2 10 11 10 57 2.0 6.2 25

σ 141 140 140 140 140 150 150 150

k = 168

µ -10 -22 -35 -41 1.6 -18 -23 -61

σ 230 210 220 220 220 220 220 220
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Localization (cont.)

• Train support vector machine5 (SVM) on µ and σ from high and
low k windows

• Both µ and σ may be calculated fast

• Calculate µ and σ for dense sampling of windows

• Use SVM to predict

5Cortes & Vapnik, 1995
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Results (cont.)

• Pick particles from 84 micrographs and reconstruct using RELION

• Agrees up to 6.7 Å with published EMD-2824

• Fully automatic, template-free particle picking, 15 minutes
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• Agrees up to 6.7 Å with published EMD-2824

• Fully automatic, template-free particle picking, 15 minutes



Conclusion

• Cross-correlation within micrograph strong signal

• Unsupervised classification using cross-correlation histogram

• Leverage initial classification to train SVM on mean and standard
deviation

• Apply SVM to densely spaced windows for prediction
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Future Work

• How to extract more information from cross-correlation? Distance
on histograms? Moments of distributions? Separate identification of
non-particles?

• Score function on densely spaced windows. Fast calculation?
Smoothness? Efficient interpolation?

• More discriminative features for SVM? Large-scale gradients?
Wavelet moments? Other classifiers? Training for deep networks?
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Thank you!

Paper:
https://arxiv.org/abs/1802.00469

Software:
https://github.com/PrincetonUniversity/APPLEpicker
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