

APPLE Picking: Particles without Templates

Joakim Andén¹, Ayelet Heimowitz², Amit Singer² April 10, 2018

¹Center for Computational Biology, Flatiron Institute, Simons Foundation ²Program in Applied and Computational Mathematics (PACM), Princeton University

Particle Picking in Cryo-EM

Particle Picking in Cryo-EM

Particle Picking in Cryo-EM

• Query window f[n, m], template g[n, m], cross-correlation:¹

$$\max_{n,m} \sum_{n',m'} f[n - n', m - m']g[n', m']$$

• Query window f[n, m], template g[n, m], cross-correlation:¹

$$\max_{n,m} \sum_{n',m'} f[n - n', m - m']g[n', m']$$

g[n,m]

¹Frank & Wagenknecht, 1983

• Query window f[n, m], template g[n, m], cross-correlation:¹

$$\max_{n,m} \sum_{n',m'} f[n - n', m - m']g[n',m']$$

g[n,m]

f[*n*, *m*]

¹Frank & Wagenknecht, 1983

• Query window f[n, m], template g[n, m], cross-correlation:¹

¹Frank & Wagenknecht, 1983

What Templates?

• Simulated projections of particles

What Templates?

• Simulated projections of particles

• Class averages from micrograph²

²Scheres, 2015

What Templates?

• Simulated projections of particles

• Class averages from micrograph²

• Difference of Gaussians³, disks⁴

²Scheres, 2015 ³Voss et al., 2009 ⁴Langlois et al., 2014

• Randomly select reference windows from micrograph

Some will contain particles, others not

• Randomly select reference windows from micrograph

Some will contain particles, others not

• What are correlations of query window with references?

• Randomly select reference windows from micrograph

Some will contain particles, others not

• What are correlations of query window with references?

• Randomly select reference windows from micrograph

Some will contain particles, others not

• What are correlations of query window with references?

Correlation Distribution

• Empty window correlates badly with all

Correlation Distribution

• Empty window correlates badly with all

• Window with particle correlates well with some

Window Score

• Count number k of correlations above threshold

Window Score

• Count number k of correlations above threshold

Window Score

• Count number k of correlations above threshold

• Good indicators, but expensive

Good indicators, but expensive Micrograph

Good indicators, but expensive Micrograph

k values

• Good indicators, but expensive

Micrograph

• Need denser sampling

Localization

• Mean (μ) and standard deviation (σ) can discriminate

Localization

• Mean (μ) and standard deviation (σ) can discriminate

FLATIRON INSTITUTE

Localization

• Mean (μ) and standard deviation (σ) can discriminate

• Train support vector machine⁵ (SVM) on μ and σ from high and low k windows

- Train support vector machine⁵ (SVM) on μ and σ from high and low k windows
- Both μ and σ may be calculated fast

- Train support vector machine⁵ (SVM) on μ and σ from high and low k windows
- Both μ and σ may be calculated fast

- Train support vector machine⁵ (SVM) on μ and σ from high and low k windows
- Both μ and σ may be calculated fast

- Train support vector machine⁵ (SVM) on μ and σ from high and low k windows
- Both μ and σ may be calculated fast

- Train support vector machine⁵ (SVM) on μ and σ from high and low k windows
- Both μ and σ may be calculated fast

• Calculate μ and σ for dense sampling of windows

- Train support vector machine⁵ (SVM) on μ and σ from high and low k windows
- Both μ and σ may be calculated fast

- Calculate μ and σ for dense sampling of windows
- Use SVM to predict

Results (cont.)

• Pick particles from 84 micrographs and reconstruct using RELION

Results (cont.)

• Pick particles from 84 micrographs and reconstruct using RELION

- Agrees up to 6.7 ${\rm \AA}$ with published EMD-2824

Results (cont.)

• Pick particles from 84 micrographs and reconstruct using RELION

- Agrees up to 6.7 ${\rm \AA}$ with published EMD-2824
- Fully automatic, template-free particle picking, 15 minutes

• Cross-correlation within micrograph strong signal

• Cross-correlation within micrograph strong signal

• Unsupervised classification using cross-correlation histogram

• Cross-correlation within micrograph strong signal

• Unsupervised classification using cross-correlation histogram

• Leverage initial classification to train SVM on mean and standard deviation

• Cross-correlation within micrograph strong signal

• Unsupervised classification using cross-correlation histogram

• Leverage initial classification to train SVM on mean and standard deviation

• Apply SVM to densely spaced windows for prediction

Future Work

• How to extract more information from cross-correlation? Distance on histograms? Moments of distributions? Separate identification of non-particles?

Future Work

• How to extract more information from cross-correlation? Distance on histograms? Moments of distributions? Separate identification of non-particles?

• Score function on densely spaced windows. Fast calculation? Smoothness? Efficient interpolation?

Future Work

• How to extract more information from cross-correlation? Distance on histograms? Moments of distributions? Separate identification of non-particles?

• Score function on densely spaced windows. Fast calculation? Smoothness? Efficient interpolation?

More discriminative features for SVM? Large-scale gradients?
Wavelet moments? Other classifiers? Training for deep networks?

Thank you!

Paper: https://arxiv.org/abs/1802.00469

Software:

https://github.com/PrincetonUniversity/APPLEpicker

Funding:

NIGMS R01GM090200, BSF 2014401, AFOSR FA9550-12-1-0317, Simons Investigator Award, Simons Collaboration on Algorithms and Geometry, and Moore Data-Driven Discovery Investigator Award

