High-Throughput High-Resolution Cryo-EM on the Cheap

EM close to the bone

Scott Stagg
Institute of Molecular Biophysics
Florida State University

- Data collection
- Data storage
- Preprocessing
- Refinement
- Data transfer and archiving

Computational environment - two models

- Do it all yourself
 - Advantages
 - Atomic control over environment
 - Disadvantages
 - Challenges getting necessary expertise
 - \$\$\$
- Distributed
 - Advantages
 - Rely on existing expertise
 - Distributed costs
 - Disadvantages
 - No control over computational environment

FSU solution - partnership with FSU Research Computing Center (RCC)

- RCC hosts
 - Database
 - Leginon/Appion website
 - Primary storage
 - High performance computing (HPC)

FSU Pricing

- 1 normalized compute unit (NCU) \$221.43 / 5 yrs
 - With 26 GB storage
 - 32 cores \$7,085.76
 - 832 GB storage
- 1 TB high-performance storage \$1450 / 5 yrs
- 1 TB archival storage \$55-\$110 / 5yrs

The trouble with not controlling the environment

- Annual breakage
 - FSU HPC upgrades the OS and libraries every year.
 - This essentially breaks everything until I have a chance to recompile/update/debug all the software packages of interest
- Appion example
 - FSU HPC CentOS 7, Apache 2.4.6, PHP 5.6
 - Parts are incompatible with Appion
 - Since we host on FSU HPC, we have a hard time getting the environment set up right

Docker and Containers

- Docker
 - "wraps up a piece of software in a complete filesystem that contains everything it needs to run: code, runtime, system tools, system libraries – anything you can install on a server. This guarantees that it will always run the same, regardless of the environment it is running in."
- Using containers allows us to separate OS release from required software packages
 - Now OS, PHP, Apache, and MySQL are all independent of each other

Potential for the future

 Using containers, will be able to ship data together with the complete user interface

Modules for managing your environment

```
[sstagg@krios ~]$ module list
Currently Loaded Modulefiles:

    gnu-openmpi/1.10.2
    relion1_4

                                                 15) direx
                          9) simple
                                                 16) ctffind4
 2) eman2
 3) de_process_frames 10) spider
                                                 17) localrec
                         11) xmipp
                                                 18) scipion
 4) eman1
 5) frealign
                       12) komodo
                                                 19) myamiss
 6) ihrsr
                         13) ffmpeg
 7) protomo
                         14) bsoft
[sstagg@krios ~]$
```

Modules for managing your environment

```
[sstagg@krios ~]$ module avail
       dot module-git module-info modules
                                       null use.own
             ----- /etc/modulefiles ------
q09test
                       pgi-openmpi
qaussian09
                       python3
gnu-mvapich2
                       R/3.1.3
gnu-openmpi/1.10.2(default) R/3.2.0
intel-mvapich2
                       R/3.2.5(default)
                    stata/10(default)
intel-openmpi
matlab_dcs
                       stata/13
                       stata/9
orca
pgi-mvapich2
-----/panfs/storage.local/imb/stagg/software/etc/modules -----
bsoft
               frealign
                             mvami-3.1
                                            protomo2_3_1
ctffind4
              frealign9-08
                             myami-3.2
                                            relion1 3
de_process_frames frealign9-09
                             myami_container
                                            relion1 4
direx
              frealign9-10
                             myamidev
                                            scipion
                             myamidevbeta
                                            simple
eman1
               ihrsr
              komodo
                                            simple2
eman2
                             myamiss
                             myamiweb
eman2_12
            localrec
                                            situs
            matlab2014tmp
                             openmpi-1-8-3
eman2mpi
                                            spider
ffmpeq
              matlabtmp
                             protomo
                                            xmipp
[sstagg@krios ~]$
```

- Data collection
 - Leginon
 - At minimum, requires a database and webserver
- Data storage
- Preprocessing
- Refinement
- Data transfer and archiving

Basic setup - Leginon

High-throughput creates two bottlenecks

- Disk space
- Processing and reconstruction
- Both problems are solved by collaborating with the high performance computing center at FSU

Distributed setup

Handling synchronization

- iwatch/inotify take care of data replication
 - run in command line mode as well as in daemon mode
 - using an easy xml configuration file
 - can watch directory recursively and watch new created directory
 - can have a list of exceptions
 - can use regex to compare the file/directory name
 - can execute command if an event occurs
 - send email
 - syslog
 - print time stamp
- MySQL capable of two-way database replication with proper setup

- Data collection
- Data storage
 - Two types are needed live and archival
- Preprocessing
- Refinement
- Data transfer and archiving

Multi-user facilities require high performance storage file systems for data collection and processing

RAID

- Pros redundant (lower failure risk), lower cost, modest computational scalability
- Cons fixed volume size, limited simultaneous reads/writes

Scalable file systems

- Pros central expandable volume, high parallel performance
- Cons cost
- Examples
 - Lustre
 - Panasas
 - GlusterFS
 - GPFS
 - others

Archival storage may be cheap, but not high-performance storage

- 8 TB disk \$250
- 8 TB of high performance Lustre space for 5 yrs on HPC - \$11,600

- Data collection
- Data storage
- Preprocessing
 - Frame alignment, CTF estimation, particle picking
- Refinement
- Data transfer and archiving

At FSU preprocessing is handled through Appion

- For SECM⁴, we provide frame alignment as part of the service provided with data collection
 - Use DE frame alignment software integrated in Appion
 - Tends to work better for integrated frames than motioncorr
 - Parallelized on HPC
 - 10 Gb "FASTLANE" fiber to HPC combined with parallel frame processing keeps up with data collection
- Also provide CTF estimation because it adds value to data collection
- Sometimes do particle picking to get statistics for user

- Data collection
- Data storage
- Preprocessing
- Refinement
 - Up to the user
- Data transfer and archiving

- Data collection
- Data storage
- Preprocessing
- Refinement
- Data transfer and archiving

Data transfer and archiving

- Our workflow
 - 10Gb from camera to HPC storage
 - Infiniband on HPC
 - Frame alignment on HPC
 - 10Gb from HPC storage to external hard drive
 - Ultimately bandwidth limited by disk speed without having RAID or parallel FS
 - Make copy of hard drive
 - Ship one copy to user
 - Keep other copy until user verifies that they have made local copy of data
 - Then ship user the other copy and wipe from local storage

In near future

- Florida HPCs recently completed an "invitation to negotiate" (ITN) for high volume storage solutions
 - Winning bid will provide storage for \$22 per TB per year
- Still slightly more expensive than buying disks but will be redundant, secure, high availability, fast write speeds, and can facilitate automated transfer

What about cloud solutions?

- Preliminary investigations suggest that transfer speed is insufficient for frame storage
 - From Donny Shrum of FSU's HPC Amazon S3 write speeds vary between 300K and 5 megabytes / s
 - We collect ~2 TB of frames per day so 5 days to upload a single day of data, download speeds are slower
- Instead of frames, could store aligned, compensated, summed images on the cloud
- Data security?