Workshop on Advanced Topics in EM Structure Determination: Challenges and Opportunities. October 29 - November 3, 2017. National Resource for Automated Molecular Microscopy Simons Electron Microscopy Center, The New York Structural Biology Center

High-throughput cryo-electron tomography: Visualizing Molecular Machines in Action

Jun Liu, PhD

Department of Microbial Pathogenesis Microbial Sciences Institute Yale School of Medicine

Motivated by the amazing illustration

THE MACHINERY OF LIFE
David Goodsell

A living cell is a collection of molecular machines in action

Our interests: Bacterial nonomachines in action

DNA

secretion

injectisome

cytoplasm

Charp

peptidoglycan

flagellum

Rationale: These nanomachines play roles in bacterial pathogenesis

infection

phage

flagellum

motility

***Our techniques:** High-throughput cryo-ET pipeline Production of bacterial minicells **★Our systems:** *Injectisomes in bacterial pathogens - Secretion * Phage infection - Trans-envelope channel formation

Automation is essential for cryoET

Frank: Electron Tomography

Automation is essential for cryoET

High throughput cryo-electron tomography

SerialEM —> MotionCor2 —> IMOD —> Tomo3D —> I3

Samples

In three days: 360 tilt series (41x8 frames); 118,080 2-D images; 4.0 Tb raw data; 32.0 Tb 3-D Tomograms.

> Morado et al. JoVE 2016 Hu et al. PNAS 2015

3-D Tomograms

A typical bacterium is too large for cryo-ET

200 nm

Our solution: bacterial minicells

N.O.Y.

In collaboration with Dr. Bill Margolin

Liu et al. Virology (2011) Liu et al. PNAS (2012)

Production of minicells

Farley et al., 2016; Carleton et al., 2013

Production of minicells

В

Abnormal Division

Centrifuge supernatant at 17,000 x g for 10 min

F

Farley et al., 2016; Carleton et al., 2013

Hu et al. PNAS 2015

minicells

shigella

Shigella minicells infecting a red blood cell

Hu et al. PNAS 2015

Bacterial nanomachines (I)

Bacterial type III secretion systems in Shigella & Salmonella

Collaborators: Maria Lara-Tejero, Jorge Galan (Yale) Bill Picking (Kansas)

Supported by NIH (R01 AI123351)

Host-Pathogen Interactions

Image from NIAID

Bacterial secretion systems

Host environment

Bacterial secretion systems

Costa et al, Nat Rev Microbiol 2015

Type III secretion mediated infection

Host cell

inflammation

Type III secretion mediated infection

Host cell

Secretion of bacterial effector proteins

Host cell

Discovery and characterization of Salmonella T3SS-1

Schraidt & Marlovits Science 2011

Kubori, T. et al. Science 1998

Near-atomic-resolution structure

Worrall et al., Nature 2016

Purified complex lacks key components

Salmonella

Worrall et al., Nature 2016 Schraidt & Marlovits Science 2011

Schroeder & Hilbi 2008

A Sorting Platform Determines the Order of Protein Secretion in Bacterial Type III Systems Lara-Tejero et al. *SCIENCE* (2011)

Shigella minicells

Hu et al. PNAS 2015

<u>300 nm</u>

Intact T3SS revealed in Shigella

Hodgkinson et al 2009, Schraidt et al. 2011, Kudryashev et al. 2013

Yersinia injectisome D

Shigella injectisome

Hu et al. PNAS 2015

OM

PG

CM

Intact T3SS machine revealed in Salmonella

Salmonella (WT)

Difference between Salmonella and Shigella

D

н

32 nm

Salmonella

Hu et al. PNAS 2015 Hu et al. Cell 2017

Molecular architecture of the export apparatus

Hu et al. Cell 2017

Structural characterization of the sorting platform

Hu et al. Cell 2017

GFP tags on key components

Molecular architecture of the T3SS machine in situ

Hu et al. Cell 2017

Type III secretion mediated infection

Host cells infected by Salmonella

HeLa cels Salmonella

HeLa cells on EM grid

Salmonella

Visualizing Salmonella-host interactions

Salmonella minicell

Raphael Park

Bacterial Nonamachines (III)

Phage infection

Novel insights into virus-host interaction and transient channel formation

Collaborators: Dr. Ian Molineux

Supported by NIH/NIGMS R01GM110243 & R01GM124378

(VII.o.it

Kleinschmidt et al.,

1962)

1,000 Å

T4

NEW MATERIALS POTENT MIXTURES Supermix alloys are stronger, tougher, stretchier

A TRICK OF THE TAI

NEW ANTIBIOTICS UNNATURAL ADVANTAGE Fully synthetic macrolides to counter resistant microbes

O NATURE.COM/NATURE 9 May 2016 £10 Vol 533, No. 7603

Lander et al. Science 2006

Science

Phage infection remains poorly understood

Simon et al. 1967

Dai et al. Nature 2013

Capturing key intermediates in T4 infection

~3 min

~1 min

~3 min Hu et al. PNAS (2015)

Formation of a trans-envelope channel

Hu et al. PNAS (2015)

Formation of a trans-envelope channel

16 nm

nm

7 0 7

OM

IM

Conformational change during contraction

20 nm

Model of the trans-envelope channel

T7 — A short tailed phage

Hu et al. Science 2013

T7 intermediates during infection

DNA

Hu et al. Science 2013

Τ7

,000

OM

IM

T7

The best is yet to come for cryo-ET

600

300

2000

Keyword: Cryo Electron Microscopy

Keyword: Cryo Electron Tomography

2010

We develop high-throughput cryo-ET pipeline to visualize bacteria and their nanomachines in action.

Bacterial minicell is a great toolbox for in situ structural determination of nanomachines.

We determine in situ structures of the T3SS machines in Shigella and Salmonella.

We reveal novel trans-envelope channels during phage infection.

Classification is essential for sorting key conformations.

Acknowledgements (Collaborators)

Shigella:

UNIVERSITY OF KANSAS William Picking Wendy Picking

Minicells: UTHELATH William Margolin

Borrelia: UTHEALTH Steven Norris Tao Lin Lihui Gao

SUNY BUFFALO Chris Li Kai Zhang EAST CAROLINA UNIVERSITY Md Motaleb Kihwan Moon

Salmonella:

YALE UNIVERSITY Jorge Galan Maria Lara-Tejero

Phage infection: UT AUSTIN **Jan Molineux**

> WEST VIRGINIA UNIVERSITY Nyles Charon

Acknowledgements

Zhuan

Shiwei

Raphael Bo Hu Xiaowei Zhao Dustin Morado Madeline Farley Jiagang Tu Wendy Wang

Thanks Very Much !

www.cryoet.org

National Institute of General Medical Sciences

Basic Discoveries for Better Health

NIH National Institute of Allergy and Infectious Diseases Leading research to understand, treat, and prevent infectious, immunologic, and allergic diseases.

R01 AI087946 (NIH/NIAID) R01 GM110243 (NIH/NIGMS) R01 GM107629 (NIH/NIGMS) Welch Foundation (AU-1714)

