The Atomic Structure of the Microtubule Nucleating γ-tubulin Small Complex and its Implications for Regulation

Axel Brilot
Agard Lab, UCSF
in collaboration with
Davis Lab, UW

Janet Iwasa
Microtubule nucleation by γ-tubulin Complexes

γTuSC/γTuRC structure, assembly, activation
Attachment factor Spc110 stabilizes γTuSC assembly

γTuSCs

Individual γTuSCs

γTuRCs/filaments

Spc110p

spindle pole body

$\text{6.5 } \gamma\text{TuSCs/turn} = 13 \gamma\text{-tubulins} = \text{in vivo MT protofilament } \#$

J. Kollman
Open - closed transition enhances γ-TuRC MT nucleation

- closed state better MT nucleator
- suggests closure as a regulatory mechanism
γTuSC pseudo-atomic model built using 6.5Å oxidized map

GCP4 crystal structure

C-terminal domain directly binds γ-tubulin

Merdes, Mourney Guillet, et al. 2011

less than 20% similarity
γTuSC pseudo-atomic model built using 6.5Å oxidized map

GCP4 crystal structure

C-terminal domain directly binds γ-tubulin

Merdes, Mourney
Guillet, et al. 2011

less than 20% similarity

Missing 234 aa from gcp2, 275 aa from gcp3
Built into a ~6.5 Å map
The Image Data

Polara Data
~80 e-/A²
Dose filtered &
aligned with MotionCorr2
Thon rings 5Å
or better
γTuSC monomer/dimer by single particle cryoEM (3.8Å)

- first true atomic description of γTuSC, numerous inserts, etc
- differences in the interfaces between the γTuSCs vs internal interface
- conformational changes in γ-tubulin upon assembly into γTuSC
- interpretation of phosphorylation sites, mutations
Workflow

Drift correct & pick
 ↓
Determine CTF
 ↓
extract particles
 ↓
2D Classification
 ↓
3D Classification
 ↓
Extract classes
 ↓
Align into one class
 ↓
3D Classification
Improving the Map

Increase Dataset size (+0.5M particles)

Various Programs (Relion, cryosparc)
 Full workflow, as well as feeding them classification results from Frealign

Focused Classification in Frealign

Various Masks
 Half-Tusc, Base only, Base plus one tubulin arm
Improving the Map - Frealign, Shaped Masks and Weighting
Assembly driven global conformation changes

both assembly & allosteric conformational changes required
Assembly driven global conformation changes

both assembly & allosteric conformational changes required
Assembly driven global conformation changes

Monomer
Closed
Open

GCP3 N-terminus

Twist of the conserved GCP domains is the major re-arrangement
What is the conformation of γ-tubulin on the γ-TuSC

98-bound γ

Human γ xtal (3CB2)

straight β

yeast MT from Nogales & Rice
What is the conformation of \(\gamma \)-tubulin on the \(\gamma \)-TuSC

straight \(\alpha \)

98-bound

Human \(\gamma \) xtal (3CB2)

straight \(\beta \)
What is the conformation of γ-tubulin on the γ-TuSC

clashes with human and yeast γ-tubulin

straight α

98-bound

Human γ xtal (3CB2)

straight β

clashes w/human γ-tubulin
What is the conformation of γ-tubulin on the γ-TuSC?
GCP2 phospho sites suggests functional roles

GCP2
GCP3
Spc110
γ-tubulin
new phos
GCP2 phospho sites suggests functional roles

Spc110 binding

GCP2
GCP3
Spc110
γ-tubulin
new phos

γTuSC recruitment

Spc110 binding
GCP2 phospho sites suggests functional roles
Models for γ-complex mediated attachment and nucleation

γ-tubulin “poised” for α-tubulin binding

attachment \Rightarrow assembly

partially active for nucleation

\square closure & activation

fully active for nucleation

MT nucleation
Acknowledgements

UCSF

Agard lab Centrosome/MT team
 David Agard
 Rose Citron
 Andrew Lyon
 Michelle Moritz
 Sam Li
 Ray Wang
 Mariano Tabios

EM Core
 Michael Braunfeld
 Alex Myasnikov
 David Bulkley
 Cameron Kennedy
 Matthew Harrington

Andrej Sali Lab
 Charles Greenberg
 Shruthi Viswanath

Beyond

Davis Lab, Univ. of Washington
 Trisha Davis
 Eric Muller
 Tamira Vojnar
 Genevieve Morin
 King Yabut
 Kim Fong
 Alex Zelter
 Richard Johnson
 Connie Peng/David Drubin UCB

SPB PO1 Group
 Mark Winey
 Trisha Davis
 Chip Asbury
 Ivan Rayment
 Andrej Sali
 Sue Jasperson