Characterizing Late Roadblocks in Ribosome Assembly

Jessica Rabuck-Gibbons1,2, Joseph Davis1, Dmitry Lyumkis2, James Williamson1

1 The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, Ca 92037

2 Laboratory of Genetics and Helmsley Center for Genomic Medicine, The Salk Institute for Biology Studies, La Jolla, Ca 92037
How does the 50S subunit assemble into its mature form?

- Ribosomes are responsible for protein synthesis in cells.
- Highly complex — 2 subunits, multiple long stretches of folded RNA, ~50 proteins.
- All these components must assemble into an ordered complex.
A genetic system to perturb large subunit biogenesis — in vivo

- Defined quantities of ribosomal protein L17 provides titratable population of assembling ribosomes.
Ribosomal protein (rpL17) depletion perturbs sucrose density gradient profiles.

Density-based separation

L17 strain + 5.0 nM HSL
L17 strain + 0.2 nM HSL

Slide by Dmitry Lyumkis
Ribosomal protein (rpL17) depletion perturbs sucrose density gradient profiles.
Ribosomal protein (rpL17) depletion perturbs sucrose density gradient profiles

Density-based separation

L17 strain + 5.0 nM HSL
L17 strain + 0.2 nM HSL

~45S

70S

30S

50S

cryoEM

Slide by Dmitry Lyumkis
Disparate structures revealed through single-particle analysis

13 structures, ~4-5 Å resolution

*** NOT dead-end or degradation products ***

Joey Davis, Yong Zi Tan, and Jamie Williamson
Theoretical density generated for each helix/protein from docked PDB.
For each map, calculated fraction of mature density occupied.

1. Helix (RNA) and protein occupancy differs between maps.
helix (RNA) and protein occupancy differs between maps

1. Theoretical density generated for each helix/protein from docked PDB
2. For each map, calculated fraction of mature density occupied

- How does occupancy of each helix and each protein vary across intermediates?

helix (RNA) and protein occupancy differs between maps

- Occupancy calculated across all proteins/helices and intermediates.
- Occupancy map can be simplified to ‘blocks’ using the median value.
Folding blocks co-localize on tertiary structure and identify folding domain boundaries.
Folding blocks co-localize on tertiary structure
... but not in sequence space

- Blocks co-localize on tertiary structure and identify folding domain boundaries.
Folding blocks co-localize on tertiary structure … but not in sequence space

- Have we recovered all of the intermediates present in the data?
- Are these structures representative of ribosome assembly, or unique to bL17 depletion?

• Blocks co-localize on tertiary structure and identify folding domain boundaries.
Have we recovered all of the intermediates present in the data? No.

Slide by Dmitry Lyumkis
State of current library of protein depletion strains

<table>
<thead>
<tr>
<th>Dataset</th>
<th>MotionCorr/CTF/etc</th>
<th>Initial 2D classification</th>
<th>Making a stack</th>
<th>gCTF</th>
<th>Relion 2D Classification</th>
<th>Relion 3D Classification</th>
<th>Frealign/Occ. Analysis</th>
<th>Hi-Res Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>L17</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>IP</td>
</tr>
<tr>
<td>L28</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>IP</td>
</tr>
<tr>
<td>L32</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>IP</td>
</tr>
<tr>
<td>L34</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>IP</td>
</tr>
<tr>
<td>L19</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IP</td>
</tr>
<tr>
<td>L36</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
L34 depletion, FrealignX 25-model single-particle classification
Occupancy analysis across strains
L17, L28, L32, L34 depletions, combined!
Harnessing cryo-EM to study macromolecular assembly

active assembly: a different way of thinking about macromolecular structure!
Harnessing cryo-EM to study macromolecular assembly

- Challenges for cryoEM analysis
 - Careful classification strategies are needed
 - When are you done classifying?
 - How to determine statistically significant differences between intermediates?
Acknowledgements

Williamson Lab (TSRI)
Jamie Williamson
Joey Davis (now at MIT)
 Carla Cervantes
 Luigi D’Ascenzo
 Oli Duss
 Lili Dörfel
 J. Hammond
 Ning Li
 Vadim Patsalo
 Anna Popova
 Matt Salie
 Galina Stepanyuk
 Yisong Deng

Lyumkis Lab (Salk)
Dmitry Lyumkis
 Youngmin Jeon
 Dario Oliveira Dos Passos
 Cheng Zhang
 Jessica Bruhn
 Sriram Aiyer
 Michaela Medina
 Philip Baldwin

Others
Bill Anderson (Hazen, TSRI)
 Yong Zi Tan (Collaborator)

Funding
 NIH
 NSF
 Helmsley Foundation
Harnessing cryo-EM to study macromolecular assembly

- Challenges for cryoEM analysis

 - Careful classification strategies are needed

 - When are you done classifying?

 - How to determine statistically significant differences between intermediates?