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Why Should I Care About the Air-water Interface? 

Well, what does an ideal sample in holes look like?

• Thin ice: particle size + ~10-20 nm of space between air-water interfaces,
• Non-overlapping particles in beam direction,
• Maximally concentrated particles with no particle-particle interactions,
• Randomly oriented particles,
• Particle layer perpendicular to the beam,
• No air-water interface interactions!
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Why Should I Care About the Air-water Interface? 

Ø No problem, my grids are perfect! ?? ?

??
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Why Should I Care About the Air-water Interface? 

Ø No problem, my grids are perfect! ?? ?
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A) <10%
B) 25%
C) 50%
D) 75%
E) >90%

What do you think: What percentage of samples are ideal?
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Why Should I Care About the Air-water Interface? 
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Why?<5%



Why Should I Care About the Air-water Interface? 

Of the >50 samples I’ve studied, <5% of samples are ideal
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• Thin ice: ~2/3 of samples are have areas of ≤50 nm ice,
• Non-overlapping particles: ~2/3 of samples are have single layer areas,
• Maximally concentrated particles with no particle-particle interactions:

>1/2 of samples have areas where particle saturation is between 60-90%,
• Randomly oriented particles: ~40% of samples have no apparent preferred 

orientations,
• Particle layer perpendicular to the beam: 80% of samples have areas oriented ≤5° 

with respect to the electron beam normal,…
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Why Should I Care About the Air-water Interface? 

What do you think: What percentage of all particles I’ve studied 
by cryoET are at the air-water interface?

A) <10%
B) 25%
C) 50%
D) 75%
E) >90%
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Why Should I Care About the Air-water Interface? 
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You Must Care About the Air-water Interface 
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You Must Care About the Air-water Interface 

250 nm

Anchi Cheng, Radostin Danev, Alex Noble

T20S Proteasome
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You Must Care About the Air-water Interface 

Hui Wei, Alex Noble

250 nm Hemagglutinin
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You Must Care About the Air-water Interface 

Laura Kim, Venkata Dandey, Alex Noble

250 nm Rabbit aldolase



You Must Care About the Air-water Interface 
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250 nm

Out of over 1,000 tomograms of
single particle grids from over 50 preps 

with incubation times on the grid on the 
order of 1 seconds,

about 90% of all particles are
on an air-water interface



You Must Care About the Air-water Interface 

Center   of holes

60%
one layer

20%
two layers

Ice thickness
(avg ± 1 stdev)

4.7 ± 3.1° 

Gold Spotiton
31 ± 14 nm

Carbon Spotiton
47 ± 25 nm

Holey Carbon
61 ± 37 nm

Particle layer tilt WRT e- beam
(avg ± 1 stdev)



You Must Care About the Air-water Interface 

~100 nm from  the edge of holes

20%
one layer

60%
two layers

Ice thickness
(avg ± 1 stdev)

6.9 ± 3.5° 

Gold Spotiton
61 ± 11 nm

Carbon Spotiton
95 ± 32 nm

Holey Carbon
99 ± 24 nm

Particle layer tilt WRT e- beam
(avg ± 1 stdev)
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Ok, so my particles are likely
adsorbed to an air-water interface…

Should I be worried?



To Help Understand Protein Behavior at Interfaces
We Turn to…
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To Help Understand Protein Behavior at Interfaces
We Turn to… air-w

a ter

oil-w
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Food Colloids – Proteins in Emulsions and Foams

taste texture digestive



Food Colloids – Proteins in Emulsions and Foams

Langmuir-Blodgett
troughs

AFM of
LB filmsIRRAS

wikimedia.orgleidenuniv.nl

ethz.ch

LB trough experiments are conducted with 
very clean equipment

…
unlike cryoEM grid prep Glaeser and Han, 2016
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How Quickly Might Bulk Particles Adsorb to the
Air-water Interface?

Bulk diffusion

adsorption
(tbd)

Theory: tbd  1 ms to 0.1 s≃ (Naydenova and Russo, 2017; Taylor and Glaeser, 2008)

Food science: tbd  0.3 ms≃ (Kudryashova et al., 2005)

Ovalbumin (45 kDa egg white protein)
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How Quickly Might Adsorbed Particles Denature at 
the
Air-water Interface?

Adsorbed particles

denaturation
(tsd)

Food science: tsd  10+ ms≃ (Kudryashova et al., 2005)

Ovalbumin (45 kDa egg white protein)
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How Thick are these Denatured Layers?

Monolayers are ~1 – 10 nm thick
using ~0.1 mg/mL bulk protein

(by IRRAS: van Vliet et al., 2002)
(by AFM: Gunning et al., 1996)
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How Thick are these Denatured Layers?

Multilayers might be as thick as 50 nm!

An IRRAS study of β-casein showed that a bulk protein 
concentration increase from 0.1 to 100 mg/mL increased the 
denatured layer thickness from 5 to 50 nm.

(Meinders et al., 2001)
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Are Denatured Protein Layers at the Air-water 
Interface Uniform?

Gunning and Morris, 2008 & 2017

Protein layer displacement by 
surfactants show non-uniform 
displacement
• Some proteins partially 

desorb
• Occurs nearly identically with 

different surfactants
Ø Denatured protein layers 

might not be uniform.

Color
indicates
thickness

β-lactoglobulin + Tween 20
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Are Denatured Protein Layers at the Air-water 
Interface Uniform?

Gunning and Morris, 2008

Disordered proteins form more uniform layers than globular proteins.

Greyscale
indicates
thickness

β-lactoglobulin +
Tween 20

β-casein +
Tween 20

time
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Does the Protein Layer Strength Vary?

Mechanical strength as measured by shear stress and compressibility 
before fracturing shows a correlation:

The more globular a protein, the stronger the protein network.

A0 = Surface area,  M = Mol. weight
blg = β-lactoglobulin bcas = β-casein

lys = lysozyme

Martin et al., 2005

gly = glycinin ova = ovalbumin

bsa = bovine serum albumin

kcas = k-casein
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Can Secondary Structure Survive
at the Air-water Interface?

Yano et al., 2008

Lysozyme studies at the air-
water interface show that 
β-sheets survive
• Most β-sheets are able to 

re-structure their 
alternating hydrophobic-
hydrophilic residues and 
thus can survive air-water 
interfaces.
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Can Surviving β-sheets Interact
at the Air-water Interface?

It has been shown that intermolecular β-sheets can bind together, 
strengthening the protein network.

Renault et al., 2002
Martin et al., 2005
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Protein Concentration-dependant Preferred 
Orientation

Surface-water protein studies 
have shown that globular 
particles at high interface 
concentrations might induce 
alternative preferred 
orientations
• Might also be applicable to 

air-water interfaces

Rabe et al., 2011
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Ok, but do we see denatured proteins in 
cryoEM grids?



Clustered Protocadherins CryoEM Grids Show 
13kDa Domains at the Air-water Interfaces

10 slices at air-
water interface 
with sample layer

25 nm

10 slices in ice 10 slices at air-water 
interface without 

sample layer

250 nm
Julia Brasch & Alex Noble



HIV-1 Trimer CryoEM Grids Show 
Domains/Receptors at the Air-water Interfaces

250 nm

Slices 110-120
(air-water/trimers)

Slice 85-95
(in ice)

Slice 45-55
(air-water/trimers)

Priyamvada Acharya & Alex Noble

Spotiton nanowire



CryoET Shows a Gradient of Visible Protein Denaturation 
Dependent on the Particle

Hemagglutinin

T20S proteasome

Apoferritin

GDH

10 nm slices
through tomograms
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So some particles denature and some don’t?

Not so fast!
Proteasome
shows partial particles



Z-slices through tomogram/ice200 nm

• Thin ice with 
proteins with 
membranes may 
disassociate from 
the membranes.

• ~100 nm ice near 
the edges

• ~15 nm ice past 
~300 nm from the 
edge

Ø Either populations 
are self-segregating 
or the membranes 
disassociate in thin 
ice.

36

~
100 nm

15
 n

m
Apparent Membrane Denaturation May Occur in Thin Ice
(Un-named Protein with Lipid Membrane)
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Ok, now I’m scared of the
air-water interface…

How do we avoid it?
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How Can We Avoid the Air-water Interface?

Standard ideas:

• Affinity grids
• Carbon over holes
• Streptavidin over holes
• Ni-NTA grids

• Introduce surfactant to your protein solution

Some non-standard ideas exist…



How Can We Avoid the Air-water Interface?

A non-standard idea:
Encapsulate particles individually using a synthetic or protein 

capsule:

Martin et al., 2016
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How Can We Avoid the Air-water Interface?
A non-standard idea:

Apply a lipid monolayer to your grid and/or thin film of sample 
on the grid:

Vos et al., 2008
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How Can We Avoid the Air-water Interface?

The best idea:

Plunge faster than the bulk and surface diffusion times (~10+ ms)

Preliminary Spotiton Time Resolve Results



Preliminary Spotiton Time Resolve Results
800 ms Spot-to-Plunge Time

250 nm

Most particles are on the air-water interfaces



Preliminary Spotiton Time Resolve Results
170 ms Spot-to-Plunge Time

250 nm

Particles are roughly evenly distributed in the ice in all directions!
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Preliminary Spotiton Time Resolve Results

So it might be possible to outrun the particle diffusion to the air-
water interface!

• These are preliminary results with a low N value.



Summary

• The ideal view of single particles in one 
layer, thin ice, no preferred orientation, 
no air-water interface interaction is 
rarely correct.

• The vast majority of all particles are 
adsorbed to the air-water interface.

• Food science literature might lend some 
ideas as to why:

• It might take 10+ ms for proteins to diffuse to and at the air-water,
• Denaturing might not be complete – protein networks can form.

• Denaturation behavior depends on 
surface hydrophobicity, particle stability, 
disulfide bonds, concentration, 
secondary structure (β-sheets), buffer, 
temperature, etc.

• This might be solvable:
• Affinity grids
• Lipids or lipid monolayers, particle encapsulation
• Plunge faster!
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GDH

Mtb Proteasome

6mg/mL aldolase

32 kDa kinase

Thank you!
Questions?

Manuscript in 
preparation

Come see 
my poster 
for 
additional 
results!
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