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Getting good images



The NRAMM website…

http://nramm.scripps.edu/2012-workshop-lectures/



Use your microscope appropriately…

Tecnai F20 Titan Krios

Parallel Use C2 aperture and lens setting that 
minimizes beam divergence 3rd Condensor Lens

Avoiding Lens 
Hystersis

Use over-focused diffraction for search 
mode Constant power lenses

Stage Side Entry Cryoholder Cryo-autoloader

Voltage 200 kV 300 kV



F20/Titan Krios cost analysis

”I think my time is worth ~£20/hr” 
  - Richard Henderson 
    (2001) 

£20/hr in 2001  ≃ £29/hr in 2014 
(£1 ≃ USD$1.68) 
     ≃ $49/hr in 2014

Titan Krios/DDD: USD $5M 
Tecnai F20/DDD: USD $2M 

—————————— 
Difference: USD $3M

62,000 hours of Richard’s time 
“Official” work week = 35 h 
(34 years with Richard)

“Machines don’t make discoveries, people do.” 
     - Lewis Kay 



Mysterious additional optimization with some microscopes

Acknowledgments:  Tim Grant (JFRC) 
       Alexis Rohou (JFRC) 
       Niko Grigorieff (JFRC) 
       Jianhua Zhao (Toronto) 
       Samir Benlekbir (Toronto)



Thallous chloride crystal - 25 kx magnification setting

d=3.842 Å



FT of thallous chloride crystal image



Average of many thallous chloride FTs
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FT of thallous chloride crystal image



Corrected FT(sinc interpolations)



Thallous chloride crystal



Corrected thallous chloride crystal



Average of many corrected thallous chloride FTs



Anisotropic magnification affects CTF estimation

• Anisotropic magnification 
appear different (worse) at 
low magnification

DF1D
F2

• Will look like objective lens 
astigmatism in power spectra



Easy way to check for anisotropic magnification (Jianhua Zhao)
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CTF parameters after anisotropy correction
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Is the problem widespread? (Yifan Cheng/Jianhua Zhao)
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Math for DDDs



Signal to Noise ratio in averages and frames

A B

Average of 30 frames: 
30 e-/Å2

Individual frame 
1 e-/Å2
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Baker and Rubinstein (2010), Method Enzymol 481, 373-90.

Exposure weighting

Hayward and Glaeser (1979).Ultramicroscopy 4, 201-10.



Exposure weighting

To illustrate the effect of imaging exposure on 3-D map quality
in single particle EM, we collected two datasets from bovine ATP
synthase, each consisting of 5000 single particle images. One data-
set was collected with exposures of !12–15 e"/Å2 on the specimen
and the other exposures of !24–30 e"/Å2 (Fig. 5a and b). A previ-
ously published 3-D map of ATP synthase (Rubinstein et al.,
2003) was refined with these datasets. The Fourier shell correlation
curves (Fig. 5c) after refinement clearly show that the higher expo-
sure dataset performs better than the lower exposure images. The
improvement observed with the higher exposure dataset probably
arises from two sources: first, the improved SNR at lower spatial
frequency allows for more accurate alignment of images; and sec-
ond, at the moderate resolutions obtained for these maps of ATP
synthase, increasing the exposure of electrons improves the SNR
of particle images at the resolution limit of the map.

These results also have an additional application. New image
detectors offer the possibility of capturing many frames during
the imaging process (Faruqi and Henderson, 2007), making each
image an exposure series. With these detectors, the first few frames
would record high spatial frequencies from the specimen with
maximal SNRs. In comparison, an average of many frames would
have low SNRs for the high-resolution information but would re-
cord low spatial frequencies with high SNRs. This average of many

frames would allow for accurate alignment of particle images while
the first few frames could be used to build high-resolution models.
An even more sophisticated approach would be to use the optimal
exposures measured here to calculate weighted averages of frames
in order to maximize the SNR at each spatial frequency.

4. Statement of contributions

JLR conceived the study and JLR and LAB designed the experi-
ments; SAB established the catalase crystal growth conditions;
LAB and EAS prepared the cryo-EM specimens, collected the
cryo-EM data, and analyzed the images; LAB performed the single
particle EM experiments and data analysis; JLR advised on all as-
pects of the project; and JLR and LAB wrote the manuscript. JLR
and LAB are guarantors for this work.
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Fig. 4. Relative signal-to-noise ratio as a function of exposure at 200 kV. Signal-to-noise ratios (SNRs), scaled between 0 and 1, are plotted for different resolutions as a
function of exposure, as described in Eq. (6). Determination of the best exposure for an imaging experiment will involve a compromise between maximizing the SNR at lower
resolutions while maintaining sufficient SNR at the highest resolution of interest to the experiment. An exposure of Neð~kÞwill result in a relative signal-to-noise ratio of 0.4 at
any given spatial frequency. The dotted vertical lines indicate the maximum, Noptð~kÞ , for each curve.
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Fig. 5. Single particle map refinement with cryo-EM images acquired with different exposures. Test data sets of 5000 images each of ATP synthase particles were collected
with exposures of either !12–15 e"/Å2 or !24–30 e"/Å2 . Subtle differences between the data sets can be seen in examples of single particle images, as shown in part a (i–viii)
for the !12–15 e"/Å2 data and in part b (i–viii) for !24–30 e"/Å2 data. A previously published map of ATP synthase (Rubinstein et al., 2003) was refined with these data sets
using Frealign (Grigorieff, 2007). Fourier shell correlation functions are shown in part c for the map refined with !12–15 e"/Å2 data (grey line) and the map refined with!24–
30 e"/Å2 (black line). The dotted lines indicate the resolution range used in refinement.
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a b s t r a c t

Electron beam damage is the fundamental limit to resolution in electron cryomicroscopy (cryo-EM) of
frozen, hydrated specimens. Radiation damage increases with the number of electrons used to obtain
an image and affects information at higher spatial frequencies before low-resolution information. For
the experimentalist, a balance exists between electron exposures sufficient to obtain a useful signal-
to-noise ratio (SNR) in images and exposures that limit the damage to structural features. In single par-
ticle cryo-EM this balance is particularly delicate: low-resolution features must be imaged with a suffi-
cient SNR to allow image alignment so that high-resolution features recorded below the noise level can
be recovered by averaging independent images. By measuring the fading of Fourier components from
images obtained at 200 kV of thin crystals of catalase embedded in ice, we have determined the electron
exposures that will maximize the SNR at resolutions between 86 and 2.9 Å. These data allow for a rational
choice of exposure for single particle cryo-EM. For example, for 20 Å resolution, the SNR is maximized at
!20 e"/Å2, whereas for 3 Å resolution, it is maximized at !10 e"/Å2. We illustrate the effects of exposure
in single particle cryo-EM with data collected at !12–15 and !24–30 e"/Å2.

! 2009 Elsevier Inc. All rights reserved.

1. Introduction and rationale

Single particle electron cryomicroscopy (cryo-EM) of frozen, hy-
drated specimens is an increasingly important technique in the
structural analysis of large protein complexes. In these experi-
ments, macromolecular assemblies are embedded in a film of
amorphous ice, preserving their structure even in the high vacuum
of an electron microscope (Dubochet et al., 1988). The resolution
limit of a modern electron microscope would allow for atomic res-
olution tomography of macromolecular assemblies were it not for
the damage to biological specimens caused by the electron beam
used to form the image. This damage occurs due to inelastic scat-
tering of electrons from the specimen and is independent of the
rate of irradiation, although reduced rates may decrease other
undesirable phenomena, such as beam induced movement, subli-
mation, and specimen bubbling (Chen et al., 2008a,b). The loss of
structural information is resolution-dependent: high-resolution
details in a specimen are destroyed first while low-resolution fea-
tures can tolerate significantly higher doses of absorbed energy
(Glaeser, 1971; Conway et al., 1993). Cooling the specimen (Taylor
and Glaeser, 1976) decreases beam-induced radiation damage and
recent studies have sought to determine the optimal temperature

at which to conduct cryo-EM experiments (Comolli and Downing,
2005; Iancu et al., 2006; Wright et al., 2006; Bammes et al.,
2010). In addition to cryoprotection, the total electron exposure
used to obtain an image must be limited to avoid the destruction
of the specimen. These low exposures result in images that have
not built up the statistical significance necessary to observe high-
resolution specimen features above image noise (Glaeser, 1971).
For reasons that are not entirely clear, ice-embedded specimens
have particularly poor contrast at high spatial frequencies (Hen-
derson, 1992), further exacerbating the problem.

High-resolution structure determination for macromolecules
attempts to restore this lost contrast by, where possible, averaging
independent images of identical molecules to decrease the noise
and reveal the signal. In cryo-EM of randomly oriented macromo-
lecular assemblies, information at low spatial frequencies is used
to determine the orientation of particle images relative to a refer-
ence volume. For these experiments, the microscopist must choose
an exposure that balances the destruction of high-resolution fea-
tures in the specimen with obtaining a SNR at low frequencies suf-
ficient to determine orientation parameters. The use of too high an
exposure or too low an exposure could prevent the construction of
an accurate 3-D map or limit the resolution obtained in a map. The
best strategy for choosing the total exposure of electrons to use in
the experiment would be to select the highest possible exposure
that still preserves with acceptable SNR the highest-resolution
information that the experiment aims to extract from the images.

1047-8477/$ - see front matter ! 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jsb.2009.11.014
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Publication Conditions Conclusion

Veesler et al. (2013)
JSB  184, 193-202 200 kV, 20.6 e-/Å2, ~4-6 Å, groups of frames small effect

Scheres (2014) 
ELife 3:e03665. Estimate B-factor for each frame effect

Wang et al. (2014)
Nat Comm 5:5808 Baker et al. 2010 measured values + 30 % effect

Baker et al.



Unaligned movie Aligned movie

Frame 1
2
3
4

Drift of movie frames

Sources of movement:

• Specimen stage drift 
• Long exposures necessary for Gatan K2 summit in counting mode (>5 sec) 
• Side entry cryoholders may have drift rates of ~1 Å/s

• Beam-induced movement 
• May cause shift of whole frame 
• May not be uniform within an image 
• Harder problem to solve



Waves and FFTs



Representing waves a vectors
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The FT represents functions in terms of waves

Function
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Shifting waves causes a phase change



Phase change of Fourier components from shifting

Shifting in real space causes phase changes in Fourier space
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Resolution encoded by different pixels in a FFT

1 Å 1 Å 1 Å 1 Å 1 Å 1 Å 1 Å 1 Å

∞ Å-1 8 Å-1 4 Å-1 2 Å-1
2.6
Å-1

Real image

Fourier transform

The FFT of an N pixel line 
image will have N/2+1 
complex pixels

(1 Å)*8/0

(1 Å)*8/1

(1 Å)*8/2

(1 Å)*8/3

(1 Å)*8/4

s

N

=

vuut 1

N

NX

i=1

(x
i

� x̄) (1)

resolution(k
x

) =
pixelsize · FTsize

radius

(2)

1



Manipulating FTs: truncating in Fourier space
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Two dimension Fourier transforms

• The FT of real functions (e.g. images) are Hermitian: for every point (a+bi) 
there is a corresponding point (a-bi) 

• For an N ⨉ N pixel image, Fourier transform is N/2+1 ⨉ N 
• The positive Nyquist and negative Nyquist values are the same
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Applying 
knowledge of 
FFTs to DDD 
images



Sometimes you may want to downsample your images

detectors (Falcon I, F416, and K2 Summit) using different beam
energies (Fig. 4). In agreement with previous measurements
(McMullan et al., 2009a), the MTF for non-counting devices shows
a significant drop at low resolution (Fig. 4A and B) due to the scat-
tering of electrons within the sensitive layer, leading to detector
counts being generated up to tens of lm from the initial point of
incidence (McMullan et al., 2009a). The distance traveled by scat-
tering electrons within the sensitive layer increases with electron
energy, leading to drops in the MTF over a narrowing range at low-
er resolution. However, at higher energies, electrons have a smaller
scattering cross-section. They therefore generate fewer counts (de-
posit less energy) in a detector, as they are less likely to scatter.
This lowers the overall DQE (Meyer and Kirkland, 1998) which is
visible especially at low resolution (Fig. 4D and E). The situation
is different for the K2 Summit, which was used in counting mode.
MTF and DQE (Fig. 4C and F) are essentially unchanged between
200 and 300 keV, presumably because electrons at either energy
generate sufficient signal to be reliably registered by the counting
algorithm implemented in the K2 Summit.

4.4. Effect of dose rate on direct electron detectors

The dose rate can affect detector performance when an image is
recorded ‘‘frame-wise’’, i.e. the final image is the result of a sum-
mation of individual frames recorded as a movie spanning the
duration of the exposure (Brilot et al., 2012; Campbell et al.,
2012; Li et al., 2013a,b; Bai et al., 2013). Existing DEDs record
images frame-wise, even if movies are not requested by the user,
because an incident electron typically generates hundreds of

counts in a pixel. If the counts are not read out in short intervals,
the pixels will become saturated. In a counting device, such as
the K2 Summit, an additional requirement is the avoidance of
two or more electrons hitting the detector in close proximity and
short succession (Li et al., 2013b). A counting detector will there-
fore have to operate with a frame rate of several hundred
frames/s to enable dose rates that allow recording of images with
exposure times of a few seconds, rather than hours.

We studied the detector performance of the K2 Summit, Falcon I
and Falcon II detectors at different dose rates, including dose rates
that noticeably degrade detector performance. Fig. 5A–C shows
DQE, MTF, and NPS for the K2 Summit operating in simple counting
mode (no super-resolution) and used with dose rates of 3–15 elec-
trons/pixel/s. The DQE decreases with increasing dose rate, espe-
cially at low frequencies. This is a consequence of changes in
both the NPS and the MTF. At high dose rates, the counting algo-
rithm fails to register more electrons than at lower dose rates,
resulting in a depressed NPS and MTF at low frequency (as dis-
cussed in the Theory section). The small increase visible in the
NPS at very low frequency (approximately 0–0.05 Nyquist) likely
reflects residual unevenness in the flat field that may be due, for
example, to small errors in gain correction.

Measured DQE, MTF, and NPS curves for dose rates of 3–60 elec-
trons/pixel/s for the Falcon I are shown in Fig. 5D–F, and for the
Falcon II in Fig. 5G–I, respectively. At first glance, the DQE of the
Falcon I appears to increase with increasing dose rate. However,
this is likely an artifact produced by saturated pixels. Fig. 5E and
F show that both the MTF and NPS of the Falcon I remain approx-
imately unchanged with dose rate. We found that, instead, the
standard deviation of the noise decreases with increasing dose
rate, despite the unchanged total dose (50 electrons/pixel), as
shown in Fig. 6. This can be explained with the nonlinear response
of the detector resulting from saturated pixels. The artifactual de-
crease of the noise at higher dose rates leads the observed inflation
of the DQE. The DQE, MTF, and NPS of the Falcon II appear to be
essentially dose-rate independent, even when a relatively high
dose rate of 60 electrons/pixel/s is used (Fig. 5G–I).

4.5. Effect of total lifetime dose on direct electron detectors

DEDs are built to withstand the high-energy electron radiation
of a typical cryo-EM experiment. However, the electronic compo-
nents inside a CMOS chip may be damaged over time as a result
of energy deposited during inelastic scattering events. We were
able to document the performance at two time points of one of
the direct detectors tested here. Fig. 7 shows two DQE curves of
the Falcon I detector mounted on the Titan Krios at the Janelia
Farm Research Campus. The Janelia facility is used regularly for
24-h data collection, five days a week; therefore, a fairly large total
lifetime dose accumulates over only a few months. One DQE curve
was calculated using data recorded when the detector had received
a total lifetime dose of about 5 million electrons/pixel while the
second curve shows the DQE at a total dose of about 35 million
electrons/pixel. The two curves agree with each other within their
estimated error, suggesting that a total dose of 35 million elec-
trons/pixel can easily be tolerated by this camera. Other cameras
might exhibit different tolerances; further experiments are needed
for a more systematic evaluation of radiation damage to DEDs.

5. Discussion

We present here a software tool to measure the DQE of electron
detectors for TEM from images of the microscope’s built-in beam
stop, making DQE measurements easily accessible to users. We
evaluated a range of detectors: four DEDs currently available, a

Fig.3. DQE of detectors at 200 kV. The DEDs outperform scintillator-based detec-
tors. The dose rates used were: K2 Summit in super-resolution mode – 4 electrons/
pixel/s (this value refers to physical pixels); K2 Summit in simple counting mode –
3 electrons/pixel/s; DE-12 – 13 electrons/pixel/s with a frame rate of 25 frames/s;
Falcon I (Brandeis) – 6 electrons/pixel/s; Falcon II (Brandeis) – 10 electrons/pixel/s;
F416 – 50 electrons/pixel/s; US4000 – 40 electrons/pixel/s.

Table 1
Detector dimensions and pixel sizes.

Detector Pixel size (lm) Pixel dimensions

US4000 15 4080 ! 4080
F416 15.6 4096 ! 4096
Falcon I 14 4096 ! 4096
Falcon II 14 4096 ! 4096
DE-12 6 4096 ! 3072
K2 Summit 5 3840 ! 3712

R.S. Ruskin et al. / Journal of Structural Biology 184 (2013) 385–393 389

Ruskin, Yu, and Grigorieff (2013). JSB 184, 385-93.



Downsampling in Fourier space
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Aligning frames 
Motioncorr  
Li … Cheng (2013). Nat Methods 10, 584-90.



(A, B etc. represent matrices):  
AB ≠ BA 
ABCD=A(B(CD))

a11 a12 a13

a21 a22 a23

a31 a32 a33

x
y
z

=
c1

c2

c3

· where
c1=a11x+a12y+a13z
c2=a21x+a22y+a23z
c3=a31x+a32y+a33z

Matrix multiplication review



Unaligned movie Aligned movie

Frame 1
2
3
4

• Define Frame 1 as “unshifted” (0,0)

• Calculate vectors (xshift,yshift) that bring two frames into register

• Can use cross correlation to estimate 6 unique vectors for 4 frame movie:
Frame 1 vs Frame 2
Frame 1 vs Frame 3
Frame 1 vs Frame 4
Frame 2 vs Frame 3
Frame 2 vs Frame 4
Frame 3 vs Frame 4

The least squares method for aligning frames

Li … Cheng (2013). Nat Methods 10, 584-90.

Can calculate (Z/2) ⨉ (Z-1) cross-correlation 
functions for a movie with Z frames  
(e.g. 30 frame movie yields 435 CCFs) 



=·

tNM means true shift vector between frames N and M 
mNM means measured shift vector (by cross correlation) between frames N and M

t12

t23

t34

m121 0 0

m14

m131 1 0

m23

m24

m34
m12≃1·t12+0·t23+0·t34
m13≃1·t12+1·t23+0·t34

1 1 1

m14≃1·t12+1·t23+1·t34

10 0
1 10

10 0

m23≃0·t12+1·t23+0·t34
m24≃0·t12+1·t23+1·t34
m34≃0·t12+0·t23+1·t34

The least squares method for aligning frames

Li…Cheng, 
Nature Methods

Once matrices are filled in standard 
linear algebra can be used to find  
values that best fit the data for  
t12, t23, t34



Improvements to the least-squares approach (I)

• Subpixel accuracy for cross correlation peaks 
 (padding in Fourier space leads to interpolation in Real space)
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• Minimum interval between frames 
 (cross correlation functions for subsequent frames might have maxima too 
 close to the origin to be reliable)

=·
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t23

t34
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m14
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Improvements to the least-squares approach (II)



=·

mNM means measured shift vector (by cross correlation) between frames N and M 
cNM means calculated shift vector between frames N and M

t12

t23

t34

m121 0 0

m14

m131 1 0

m23

m24

m34

c12=1·t12+0·t23+0·t34
c13=1·t12+1·t23+0·t34

1 1 1

c14=1·t12+1·t23+1·t34

10 0

c23=0·t12+1·t23+0·t34

1 10

c24=0·t12+1·t23+1·t34

10 0

c34=0·t12+0·t23+1·t34

Residual12=|c12-m12|
Residual13=|c13-m13|
Residual14=|c14-m14|
Residual23=|c23-m23|
Residual24=|c24-m24|
Residual34=|c34-m34|

Improvements to the least-squares approach (III)

• Throw away equations with high residuals
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Shifting images in Fourier space
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Aligning individual 
particles 
alignparts_lmbfgs 
Rubinstein and Brubaker (2014). arXiv 1409.6789
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Global optimization for aligning individual particles

Rubinstein and Brubaker (2014). arXiv 1409.6789

Fourier transform of individual particle movie 
Z frames 
J Fourier components (Fjz)

Fjz

z=1 …
Z

a+bi

FTs of frames
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�
jz

= k
x

(j) · x
z

2⇡

N
+ k

y

(j) · y
z

2⇡

N
(2)

where N is the extent in pixels in both the x and y direction of the N⇥N image, and k
x

(j) and k
y

(j) are the distance
of the jth Fourier component from the origin in the k

x

and k
y

directions, respectively. As described above, �x
z

and �y
z

are the di↵erence in particle position between frame z and frame 1 in the x and y directions, respectively.
The Fourier transform of a sum is equal to the sum of Fourier transforms. Consequently, the sum of the jth Fourier
components from all of the shifted frames of a movie with Z frames is given by

ZX

z=1

F
jz

S
jz

(3)

The unnormalized correlation between two Fourier transforms, F1 and F2, is given by

F1 · F ⇤
2

where ⇤ denotes the complex conjugate. For the correlation between the sum image and the individual frame,
these values must be summed for the J Fourier components in a resolution band ~k(j) 2 [~r

min

,~r
max

]. It is only
necessary to consider two times the real part of the expression for the correlation, because the Fourier transforms of
real functions, such as images, are Hermitian, so that for every term in the correlation

(a1 + b1i)(a2 � b2i) = a1a2 + b1b2 + (a2b1 � a1b2)i

there is a corresponding term

(a1 � b1i)(a2 + b2i) = a1a2 + b1b2 � (a2b1 � a1b2)i

and adding these two terms removes the imaginary part of function. In an objective function, the factor of 2
may be neglected without changing the position of the optimum, and the negative of the function can be used in or-
der to interface with pre-existing optimization algorithms, which typically seek to minimize functions. Consequently,
we can propose an objective function, O(⇥), that meets the criterion described above:
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0 can
be computed e�ciently as the sum of the squares of the real and imaginary parts of the two terms. With equation
4 as the objective function, iterative optimization methods can be used to explore the (2⇥ Z)-dimensional space of
frame translations to find values of x
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and y
z

that minimize the function.
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The Fourier transform of a sum is equal to the sum of Fourier transforms. Consequently, the sum of the jth Fourier
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(a1 + b1i)(a2 � b2i) = a1a2 + b1b2 + (a2b1 � a1b2)i

there is a corresponding term

(a1 � b1i)(a2 + b2i) = a1a2 + b1b2 � (a2b1 � a1b2)i

and adding these two terms removes the imaginary part of function. In an objective function, the factor of 2
may be neglected without changing the position of the optimum, and the negative of the function can be used in or-
der to interface with pre-existing optimization algorithms, which typically seek to minimize functions. Consequently,
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The Fourier transform of a sum is equal to the sum of Fourier transforms. Consequently, the sum of the jth Fourier
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where ⇤ denotes the complex conjugate. For the correlation between the sum image and the individual frame,
these values must be summed for the J Fourier components in a resolution band ~k(j) 2 [~r
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]. It is only
necessary to consider two times the real part of the expression for the correlation, because the Fourier transforms of
real functions, such as images, are Hermitian, so that for every term in the correlation
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there is a corresponding term
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and adding these two terms removes the imaginary part of function. In an objective function, the factor of 2
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Global optimization for aligning individual particles

Rubinstein and Brubaker (2014). arXiv 1409.6789

Find an objective function that, when maximized, 
maximizes the sum of the correlations of each shifted frame 
with the sum of the shifted frames.

Equivalently: find an objective function that, when minimized, 
maximizes the sum of the correlation of each shifted frame  
with the sum of the shifted frames.



0

1

2

3

4

5

6

-1

-2

-3

-4

-5

6/-6

1 2 3 4 5
0

1

2

3

4

5

6

-1

-2

-3

-4

-5

6/-6

1 2 3 4 5
0

1

2

3

4

5

6

-1

-2

-3

-4

-5

6/-6

1 2 3 4 5
0

1

2

3

4

5

6

-1

-2

-3

-4

-5

6/-6

1 2 3 4 5
0

1

2

3

4

5

6

-1

-2

-3

-4

-5

6/-6

1 2 3 4 5
0

1

2

3

4

5

6

-1

-2

-3

-4

-5

6/-6

1 2 3 4 5

z=1 …
Z

FTs of shifted frames

0

1

2

3

4

5

6

-1

-2

-3

-4

-5

6/-6

1 2 3 4 5

Sum of FTs

equations. Matrix algebra is then used to determined the frame-to-frame translations that best fit the data in a
least squares sense. This least squares whole frame alignment method has allowed high-resolution structures to be
determined for important biological macromolecules [?, ?, ?].

Cryo-EM of large particles with DDDs has shown that beam-induced motion cannot be completely described by rigid
body translation of entire movie frames [?]. Instead, these experiments suggested that the beam-induced movement
of ice embedded protein is better described by a translation of each particle in each frame. Examination of tilt
pairs of images demonstrated that rotation of specimens, probably due to movement of the ice layer, does occur
[?]. However, the magnitude of these rotations was small and will have the most significant e↵ect on particles with
large radii, like viruses. The consequences of specimen rotation can be neglected at present without limiting map
resolution for particles smaller than 1 MDa. The translation of particles in frames can be written as �~t

z

= �(x
z

, y
z

)
for each particle in frame z, where �x

z

and �y
z

are the di↵erence in particle position between frame z and frame 1 in
the x and y directions, respectively. If these translations are known, their inverse (~t

z

) can be applied to the particle
images before averaging of frames to optimize the extraction of high-resolution information from the image. It is
likely that accurate individual particle motion correction could extract information from images that is neglected by
whole frame alignment. Despite the success of the least squares method for whole frame alignment, it was pointed
out by the authors of the method that it is not able to reliably align image regions smaller than 2000 ⇥ 2000 pixels
for movies acquired using typical conditions. As such, the least squares method is not capable of aligning regions of
frames that contain individual particles in order to correct for deformation of the ice layer during imaging. A method
to align individual particles was introduced that is tightly integrated into the single particle orientation estimation
framework of the program Relion and has resulted in several high-resolution structures [?, ?]. For small particles this
approach requires rolling averages of frames, which increases the SNR over individual frames but loses information
about true trajectories. Also, the individual particle trajectories for small particles from this method include errors,
and it is necessary to fit linear trajectories for particles, which are not necessarily a good approximation for their
true trajectories. Furthermore, the approach cannot readily be used outside of the Relion software package.

Here we aim to identify the translations ~t
z

for movies of individual ice-embedded particles that best bring the frames
into alignment for each particle, without the use of rolling frame averages or fitted linear trajectories. In order to
produce a robust and computationally e�cient method for correcting the e↵ects of beam-induced movement in small
regions in images, or on individual small (< 1 MDa) particles, we pose the problem in terms of optimization. We
propose an objective function based on the correlation of the Fourier transforms of individual frames with the sum of
all frames. A well-established iterative optimization algorithm that makes use of partial derivatives of the objective
function is then used to find the desired translation values. Once optimized, this objective function gives frame-
to-frame trajectories for images of individual particles that show strong local correlation. We show that smoothing
of trajectories for individual particles can be used to identify and correct beam-induced particle movement. These
approaches were implemented in a new program, alignparts lmbfgs.

2 Methods and Results

2.1 Choice of objective function

Based on the observation that averages of unaligned particle frames appear blurred, we propose that a reasonable
alignment for each region of the frame that contains a particle is the alignment that makes the sum of all of the
frames best agree with each of the frames. Accordingly, we propose an objective function that maximizes the sum of
the correlations of the Fourier transform of each shifted frame with the sum of the Fourier transforms of the shifted
frames. Prior to analysis, we apply a temperature factor in Fourier space with the form exp(�B

4d2 ) to prevent fixed
pattern noise from dominating the analysis [?]. The e↵ect of translation on the Fourier transform of a movie frame
is a phase change, �

jz

, in each Fourier component of the frame, written F
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for the jth Fourier component of frame
z. The phase shifted Fourier component is given by
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The Fourier transform of a sum is equal to the sum of Fourier transforms. Consequently, the sum of the jth Fourier
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The unnormalized correlation between two Fourier transforms, F1 and F2, is given by F1 · F ⇤
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the complex conjugate. For the correlation between the sum image and the individual frame, these values must be
summed for the J Fourier components in a resolution band ~k(j) 2 [~r
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]. It is only necessary to consider two
times the real part of the expression for the correlation, because the Fourier transforms of real functions, such as
images, are Hermitian, so that for every term in the correlation (a1+b1i)(a2�b2i) = a1a2+b1b2+(a2b1�a1b2)i there
is a corresponding term (a1 � b1i)(a2 + b2i) = a1a2 + b1b2 � (a2b1 � a1b2)i and adding these two terms removes the
imaginary part of function. In an objective function, the factor of 2 may be neglected without changing the position
of the optimum, and the negative of the function can be used in order to interface with pre-existing optimization
algorithms, which typically seek to minimize functions. Consequently, we can propose an objective function, O(⇥),
that meets the criterion described above:
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be computed e�ciently as the sum of the squares of the real and imaginary parts of the two terms. With equation
4 as the objective function, iterative optimization methods can be used to explore the (2⇥ Z)-dimensional space of
frame translations to find values of x
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and y
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that minimize the function.

2.2 Partial derivatives of the objective function

Numerous algorithms exist for optimizing objective functions. Optimization problems can benefit greatly from the
ability to analytically determine partial derivatives, or gradients, of the objective function with respect to all variables.
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2.2 Partial derivatives of the objective function

Numerous algorithms exist for optimizing objective functions. Optimization problems can benefit greatly from the
ability to analytically determine partial derivatives, or gradients, of the objective function with respect to all variables.
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We elected to use the limited memory Broyden-Fletcher-Goldfarb-Shanno (lm-bfgs) algorithm [?] to optimize the
objective function in equation 4. By providing equations 4, 5, and 6 for lm-bfgs optimization, values of x

z

and y
z

were obtained for movies of V-ATPase particles in ice. Fig. 2A shows the calculated trajectories from optimization
of 200 regions of 320 ⇥ 320 pixels in each frame. These 200 image regions were selected by template matching from
the image in Fig. 1A, and contain a mixture of usable particle images and other image features. The trajectories
show local correlation, even though at this stage in the analysis individual particle trajectories are not provided with
any information about the trajectories of nearby particles, except for any overlap in the 320 ⇥ 320 pixel boxes. Close
inspection of the trajectories in two regions of the micrograph (Fig. 2Bi and ii) reveals noise in the trajectories of
individual particles obtained by the optimization method.

2.3 Smoothing

Although encouraging, the noise seen in trajectories of particles in Fig. 2Bi and ii suggests that the optimization
does not show the true trajectories of individual particle images. One obvious approach to reducing noise in a
trajectory is to calculate the trajectory from a larger portion of the image, thereby increasing the signal available
for calculating the objective function. Unfortunately, as the size of the box used for determining particle positions
increases, particles must progressively be excluded that fall too close to the edge of the image. Increasing box sizes
also results in almost identical trajectories for nearby particles that may mask the local variation in movement that
this technique aims to recover. Better noise removal can be achieved by using two reasonable assumptions that
are neglected in the analysis presented in Fig. 2. The first assumption is that trajectories are unlikely to have
sudden changes in direction, although the possibility of these changes cannot be eliminated. The second assumption
is that nearby particle trajectories are correlated. Enforcing these two conditions can be used to ‘smooth’ particle
trajectories to remove noise.
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2.2 Partial derivatives of the objective function

Numerous algorithms exist for optimizing objective functions. Optimization problems can benefit greatly from the
ability to analytically determine partial derivatives, or gradients, of the objective function with respect to all variables.
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We elected to use the limited memory Broyden-Fletcher-Goldfarb-Shanno (lm-bfgs) algorithm [?] to optimize the
objective function in equation 4. By providing equations 4, 5, and 6 for lm-bfgs optimization, values of x

z

and y
z

were obtained for movies of V-ATPase particles in ice. Fig. 2A shows the calculated trajectories from optimization
of 200 regions of 320 ⇥ 320 pixels in each frame. These 200 image regions were selected by template matching from
the image in Fig. 1A, and contain a mixture of usable particle images and other image features. The trajectories
show local correlation, even though at this stage in the analysis individual particle trajectories are not provided with
any information about the trajectories of nearby particles, except for any overlap in the 320 ⇥ 320 pixel boxes. Close
inspection of the trajectories in two regions of the micrograph (Fig. 2Bi and ii) reveals noise in the trajectories of
individual particles obtained by the optimization method.

2.3 Smoothing

Although encouraging, the noise seen in trajectories of particles in Fig. 2Bi and ii suggests that the optimization
does not show the true trajectories of individual particle images. One obvious approach to reducing noise in a
trajectory is to calculate the trajectory from a larger portion of the image, thereby increasing the signal available
for calculating the objective function. Unfortunately, as the size of the box used for determining particle positions
increases, particles must progressively be excluded that fall too close to the edge of the image. Increasing box sizes
also results in almost identical trajectories for nearby particles that may mask the local variation in movement that
this technique aims to recover. Better noise removal can be achieved by using two reasonable assumptions that
are neglected in the analysis presented in Fig. 2. The first assumption is that trajectories are unlikely to have
sudden changes in direction, although the possibility of these changes cannot be eliminated. The second assumption
is that nearby particle trajectories are correlated. Enforcing these two conditions can be used to ‘smooth’ particle
trajectories to remove noise.
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Improvement #1: disfavour unlikely trajectories
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Derivatives of penalty function

sudden changes in direction, although the possibility of these changes cannot be eliminated. The second assumption
is that nearby particle trajectories are correlated. Enforcing these two conditions can be used to ‘smooth’ particle
trajectories to remove noise.
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where � is a user selected weighting parameter. This penalty is known as second order smoothing because it penalizes
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The derivative of the smoothed objective function is therefore the sum of the values from equation 6 and 9 for the
derivative with respect to x

a

, and the sum of the values from equation 7 and 10 for the derivative with respect to
y
a

. Fig. 3A shows the e↵ect of increasing values of the user set parameter � for two regions on opposite sides of
the micrograph (Fig. 3Ai and ii). With � = 0, the trajectories are noisy, as seen in Fig. 2. With � = 1 ⇥ 105 a
significant amount of noise has been removed from the trajectories. Note also that nearby trajectories appear to
be correlated even though this condition has not been enforced. With � = 1 ⇥ 1010, an excessively large number,
trajectories have been forced to become linear. Forcing trajectories to be linear is equivalent to fitting a single drift
rate for each particle in the movie.

2.3.2 Local averaging for smoothing

Local correlation of nearby particle trajectories without the use of an increased box size can be achieved by weighted
averaging after trajectories are calculated. In this approach, ‘raw trajectories’ are determined for individual particles
with or without second order smoothing. Once raw trajectories are determined, locally averaged trajectories are
calculated according to
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The derivative of the smoothed objective function is therefore the sum of the values from equation 6 and 9 for the
derivative with respect to x
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, and the sum of the values from equation 7 and 10 for the derivative with respect to
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. Fig. 3A shows the e↵ect of increasing values of the user set parameter � for two regions on opposite sides of
the micrograph (Fig. 3Ai and ii). With � = 0, the trajectories are noisy, as seen in Fig. 2. With � = 1 ⇥ 105 a
significant amount of noise has been removed from the trajectories. Note also that nearby trajectories appear to
be correlated even though this condition has not been enforced. With � = 1 ⇥ 1010, an excessively large number,
trajectories have been forced to become linear. Forcing trajectories to be linear is equivalent to fitting a single drift
rate for each particle in the movie.

2.3.2 Local averaging for smoothing

Local correlation of nearby particle trajectories without the use of an increased box size can be achieved by weighted
averaging after trajectories are calculated. In this approach, ‘raw trajectories’ are determined for individual particles
with or without second order smoothing. Once raw trajectories are determined, locally averaged trajectories are
calculated according to
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Improvement 2: Enforce local correlation
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sudden changes in direction, although the possibility of these changes cannot be eliminated. The second assumption
is that nearby particle trajectories are correlated. Enforcing these two conditions can be used to ‘smooth’ particle
trajectories to remove noise.
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where � is a user selected weighting parameter. This penalty is known as second order smoothing because it penalizes
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The penalty function described in equation 8 is added to the objective function in equation 5 to obtain the overall
objective function that is optimized. The contribution to the penalty function in equation 8 from shifting of the ath
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The derivative of the smoothed objective function is therefore the sum of the values from equation 6 and 9 for the
derivative with respect to x

a

, and the sum of the values from equation 7 and 10 for the derivative with respect to
y
a

. Fig. 3A shows the e↵ect of increasing values of the user set parameter � for two regions on opposite sides of
the micrograph (Fig. 3Ai and ii). With � = 0, the trajectories are noisy, as seen in Fig. 2. With � = 1 ⇥ 105 a
significant amount of noise has been removed from the trajectories. Note also that nearby trajectories appear to
be correlated even though this condition has not been enforced. With � = 1 ⇥ 1010, an excessively large number,
trajectories have been forced to become linear. Forcing trajectories to be linear is equivalent to fitting a single drift
rate for each particle in the movie.

2.3.2 Local averaging for smoothing

Local correlation of nearby particle trajectories without the use of an increased box size can be achieved by weighted
averaging after trajectories are calculated. In this approach, ‘raw trajectories’ are determined for individual particles
with or without second order smoothing. Once raw trajectories are determined, locally averaged trajectories are
calculated according to
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where d
mn

is the distance between the mth and nth particles and � is a user set parameter that determines the
extent to which the smoothing is applied. This Gaussian weighting is equivalent to the local averaging proposed
used for fitting linear trajectories in Relion [?]. Because of the Gaussian form of equation 12, 95 % of of the weight
for a particle trajectory will come from the trajectories within 2� pixels of that particle. Fig. 3B shows the e↵ect
of increasing the � parameter for two sets of nearby trajectories (Fig. 3Bi and ii), without the use of second order
smoothing. With � = 0, the trajectories are noisy, as seen in Fig. 2. With � = 500 a significant amount of noise has
been removed from the trajectories, even though smoothness has not be enforced. With � = 5000, an excessively
large number, trajectories on opposite sides of the micrograph from each other have been forced to be similar. In
this situation, depending on the number of particles selected in the micrograph, the method becomes a nearly rigid
frame alignment. Ideal smoothing of particle trajectories comes from combining the two approaches described above.
Fig. 4A shows trajectories with � = 1⇥104 and � = 500. As can be seen in two enlarged regions from opposite sides
of the micrograph (Fig. 4Bi and ii), individual particle trajectories appear smooth with strong local correlation but
significant variation from one edge of the micrograph to the other.

3 Discussion

For full frame alignment, the least squares algorithm proposed by Li and colleagues possesses a significant advantage
over the approach described here, in that the frame translations are highly over-determined: a movie consisting of Z
frames will provide (Z� 1)Z2 equations that can be used to determine the Z� 1 frame translations needed to correct
motion [?]. Consequently, the least squares method will likely outperform the global optimization approach in situa-
tions where whole frames are aligned. However, while the least squares method correlates low SNR frames with other
low SNR frames, the global optimization approach correlates low SNR frames with the relatively high SNR sum of
frames. Consequently, the global optimization method is able to work with image boxes at least as small as the 320
⇥ 320 pixel boxes used here. The global approach should behave similarly to an non-global iterative approach where
frames are averaged and individual frames are subsequently aligned to the average. Special care must be taken in the
non-global iterative approach to ensure that the ath frame is not aligned to an average where the ath frame has been
included at a fixed position, which could bias the alignment of the ath frame. In the global optimization approach
presented here, the average always includes the ath frame with the translations for the ath frame that are being
tested. Also, in the global optimization approach changing the translations for the ath frame instantaneously a↵ects
the correlation of all other frames with the sum image, while with the non-global iterative approach it does not,
possibly making the identification of a global optimum less robust. The non-global iterative approach will also almost
certainly be slower than the global optimization algorithm at finding the optimum alignment of frames. The global
optimization approach benefits from being able to incorporate the second order smoothness constraint directly into
the objective function. Both algorithms could become trapped in a local alignment minimum. However, the form of
equation 5 suggests that the problem is convex and global solutions will usually be found. The Relion procedure [?]
integrates estimation of particle trajectories with projection matching from a reference map of the protein complex .
Both procedures attempt to regularize particle trajectories: Relion by using a running average of particle frames and
fitting of a linear trajectory, the global optimization approach by introducing the second order smoothness constraint.
The Relion approach has the potential advantage that projections from a refined 3D map will posses stronger signal
than the sum of all frames used as a reference in the global optimization approach. The potential disadvantage of
the Relion approach relative to the global optimization approach is that errors in contrast transfer function (CTF)
estimation, structured noise in images from sample contamination or ice contamination, di↵ering conformation of
the protein particle in the image and map, and any other sources of inaccuracy in projection matching could a↵ect
the accuracy of trajectory estimation. Compared to the procedure introduced in Relion, the global optimization
approach will also be much less computationally expensive.

The two di↵erent smoothing approaches, second order smoothing and local weighted averaging of trajectories, have
di↵erent advantages and uses. Second order smoothing is independent of particle density in images. If images contain
few particles, their trajectories should be smoothed by increasing the second order smoothing parameter �. Local
averaging of trajectories will have little e↵ect for particles that are far apart but can be applied e↵ectively where
there are many particles or other image features that can be aligned. A value of � should be chosen that reflects
how quickly trajectories change across the image. For this situation, the amount of second order smoothing can be
decreased somewhat. In the future, trajectory smoothing could benefit from a physical model of what is causing the
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Local averaging and second order smoothing
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Comparison of drift correction methods

Approach Correlation Smoothing Advantages/
Disadvantage

Least squares 
(Motioncorr)

Noisy images to noisy 
images

Over-determined 
problem (fitted 
trajectory, local 

correlation possible)

Over-determined/
low signal-to-

noise in 
comparisons

Polishing 
(Relion)

Noisy images to map 
projections

Linear fit, rolling 
averages, enforce 
local correlation

Map projection v. 
high SNR/map 
projection may 

not match image

Non-global iterative Noisy images to sums of 
noisy images

Fitted trajectory, 
enforce local 
correlation

Sum of images 
high SNR/No 

built in 
regularization

Global optimization 
(Alignparts_lmbfgs)

Noisy images to sums of 
noisy images

Penalize changes in 
trajectory, enforce 
local correlation

Non-linear 
trajectories/Map 
projections have 

higher SNR



Putting it all together (Michael Latham, Samir Benlekbir)

• Thermoplasma acidophilum 20S proteasome (Kay lab) 
• 1 grid frozen on a FEI Vitrobot in ethane/propane 
• FEI F20 at 200 kV, Gatan 626 side entry cryoholder 
• 30 µm C2 aperture 
• Gatan K2 Summit in super-resolution mode 
• movies captured at 5 e-/pix/sec 
• 1.45 Å/pixel 
• 30 frames, 15 seconds, 1 e-/Å2/frame 
• 60 Movies (short afternoon session)  
• downsampled by Fourier truncation (Alexis Rohou) 
• local movement corrected with alignparts_lmbfgs.f90 
• exposure weighting with alignparts_lmbfgs.f90 
• magnification anisotropy correction in particles and CTF parameters 
• 13,974 particles with D7 symmetry



Putting it all together (Michael Latham, Samir Benlekbir)

3.8 Å resolution



Apples to Oranges Comparisons

NRAMM (F20/K2) 
Campbell et al. JSB (2014) 
Particle Polishing, 21,818 Particles 
Relion 
4.2 Å

UCSF (Polara/K2) 
Li et al. Nature Methods (2013) 
Motioncorr 126,729 Particles 
Frealign 
3.3 Å

SickKids (F20/K2) 
Latham, Benlekbir, Unpublished 
Alignparts_lmbfgs, 13,974 Particles 
Relion 
3.8 Å

beam-induced motion. We used a frame offset of 2 or 7 along with
a B factor of 150 or 1000 pixels2 for aligning the movie frames of
the NxV and T20S datasets, respectively. Projection-matching
refinements were performed with the Relion software (Scheres,
2012a,b) for the two datasets described in this manuscript.
Reported resolutions are based on the gold-standard FSC = 0.143
criterion (Scheres and Chen, 2012) and Fourier shell correction
curves were corrected for the effects of soft masking by high-
resolution noise substitution (Chen et al., 2013).

3. Structure of NxV at 3.7 Å resolution

We collected 625 movies of frozen-hydrated mature NxV parti-
cles (incubated at pH5 for 24 h to induce maturation, followed by
an incubation at pH8 for 3.5 min immediately prior freezing) with
a defocus in the range 1–3 lm and a total exposure of 38 e!/Å2

(Fig. 1A), which corresponds to 1.5 e!/Å2/frame. We initially com-
puted a 3D reconstruction using 14,884 particle images extracted
from the motion-corrected 25-frame averages and the crystal
structure of the NxV capsid low-pass filtered to 60 Å resolution
as initial model (PDB 1OHF) (Helgstrand et al., 2004; Munshi
et al., 1996). The resolution of the resulting map is 3.8 Å, as
attested by the FSC at a cutoff of 0.143 and the map resolvability
(Fig. 1B and C). We then applied the statistical refinement proce-
dure implemented in Relion to correct individual particle motions
(rotations and translations) (Bai et al., 2013). We used a running

average window of 3 frames along with standard deviations of
the priors on the rotations and translations of 1! and 2 pixels,
respectively. This procedure improved the resolution of the recon-
struction to 3.7 Å (Fig. 1 C) which is in agreement with the features
observed in the map showing well-defined a-helices, fully resolved
b-strands and many amino-acid side chains (Fig. 1 D–F).

4. Structure of the T20S proteasome at 4.2 Å resolution

We collected 166 movies of frozen-hydrated T20S with a defo-
cus in the range 0.75–3.3 lm and a total exposure of 38 e!/Å2

(Fig. 2A and Table 1), which corresponds to 1.5 e!/Å2/frame. Parti-
cle images were sorted and selected using Xmipp Image sort by
statistics (Scheres et al., 2008) and CL2D (Sorzano et al., 2010)
retaining both side views and top views. We initially computed a
3D reconstruction with 21,818 particle images extracted from
the motion-corrected 25-frame averages and a previous recon-
struction of the same specimen low-pass filtered to 50 Å resolution
as initial model (EMD-5623) (Li et al., 2013b). The resolution of the
resulting reconstruction is 4.4 Å, as indicated by the FSC at a cutoff
of 0.143 and the map quality (Fig. 2B and C). We subsequently used
the particle polishing procedure implemented in the version 1.3 of
the Relion software to account for individual beam-induced parti-
cle translations and to calculate a frequency-dependent weight for
the contribution of individual movie frames to the reconstruction
(Scheres, 2014). This processing scheme improved the resolution
of the reconstruction to 4.2 Å, as attested by a significant

Fig.2. T20S proteasome reconstruction at 4.2 Å resolution. (A) A micrograph of ice-embedded T20S after movie frame alignment (defocus: 2.1 lm). (B) T20S reconstruction.
(C) Gold-standard Fourier shell correlation curves indicate a resolution of 4.36 Å before (dashed line) and 4.18 Å after (solid line) accounting for beam-induced translations for
each particle, respectively. (C) An a-helical segment from one b subunit is shown in ribbon representation with the corresponding region of the reconstruction. Bulky side
chains are visible. (D) A b-sheet segment from one b subunit is depicted in ribbon representation with the corresponding region of the reconstruction showing that individual
b-strands are resolved.
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The FSC values at 5 Å of each single-frame 
3D reconstruction correlate well with the 
average motion speed (Fig. 3c).

3D reconstruction of an archaeal 20S proteasome
To obtain the best reconstruction of the T. acidophilum 20S pro-
teasome, we corrected beam-induced motions using 3 × 3 sub-
regions of 2,048 pixels × 2,048 pixels each and then refined the 
3D reconstruction using a frequency-limited refinement proce-
dure29 (Supplementary Fig. 6a and Online Methods). We further 
excluded the first two subframes (deteriorated by fast motion) 
and last ten subframes (deteriorated by radiation damage) from 
our calculation of the final 3D reconstruction. Our final 3D 
reconstruction had a nominal resolution of 3.3 Å (Fig. 3a) and 
was based on a total dose of ~17.5 electrons per Å2, although the 
full dose of 35 electrons per Å2 was used for particle refinement. 
This nominal resolution was confirmed by the gold-standard 
FSC29 (Supplementary Fig. 6b). This 3D reconstruction, its FSC 
curve and the rotational average of its Fourier power spectrum 
were noticeably better than those calculated from all subframes 
and using the entire subframe for motion correction (Fig. 3 and 
Supplementary Fig. 4c). Although the difference in amplitude 
between the red and blue curves (that is, reconstructions cal-
culated with uncorrected versus optimally corrected subframes; 
Fig. 3b) is not well represented by a single exponential falloff  
(B factor), the equivalent B-factor improvement ranges from 
~100 Å2 at a resolution of 10 Å to ~50 Å2 at 5 Å. In the 3D density 
map (Fig. 5a–c), the C  main chain can be traced unambigu-
ously, and most side chain densities are well resolved, validating 
the nominal resolution estimated from the FSC curve (Fig. 3a). 
The atomic structure including most of side chains of the 20S 
proteasome fits well into the final 3D density map, except for a 
small reverse turn loop of three residues in the -subunit (Met22, 
Glu23 and Asn24). These residues have much higher temperature 
factors in the 3.4-Å crystal structure and can be remodeled to fit 
nicely into the density map (Supplementary Fig. 7). The overall 
quality of the cryo-EM 3D density map is similar to that of a 
3.4-Å 2Fo – Fc map from the crystal structure (Fig. 5d,e). The 
nominal resolution, as well as the overall quality of the density 
map, is similar to that of several recently obtained reconstruc-
tions of much larger icosahedral viruses having much higher 
internal symmetry2.

DISCUSSION
Here we show that the combination of a single-electron counting 
detector and a motion-correction algorithm make high-resolution 
structures obtainable by cryo-EM for smaller and lower-symmetry 
samples than had been previously possible. Our 3.3-Å structure 
of the T. acidophilum 20S proteasome (Fig. 5c) is comparable 
in resolution and map quality to the crystal structure (3.4 Å,  
Fig. 5e), strongly indicating the power of single-particle cryo-EM 
for detailed structural biology.

We showed that an electron-counting camera is superior to both 
photographic film and linear types of digital cameras. Its benefits 
derive from improved DQE at high resolution (demonstrated by 
the ~3-Å Thon rings; Fig. 2) and excellent DQE at low resolution 
(allowing small proteins to be imaged at the relatively low defo-
cuses favorable for high resolution). In this study, images of the 
20S proteasome showed excellent contrast even when recorded at 
a defocus of ~1 m at 300 kV (Supplementary Fig. 1). Obtaining 
such contrast in images recorded under similar conditions was 
impossible when using either photographic film27 or a scintilla-
tor-based CCD camera30.

The other critical advantage of an electron-counting camera 
is the combination of essentially noiseless imaging and a high-
output frame rate. Together these enable optimal collection and 
alignment of dose-fractionated data without the information 
loss inherent to any charge-accumulating camera. This not only 
provides a means for motion correction but also enables a better 
understanding and treatment of beam-induced motion, which is 
one of the most challenging physical problems in cryo-EM13–15. 
Without correction, the vast majority of images were deteriorated 
by beam-induced motions, and only a small fraction (~1%) could 
be characterized as close to perfect. Motion correction improved 
the quality of almost all images (Supplementary Fig. 3), and 
Thon rings from a large number of corrected images could be 
seen at close to 3 Å (Fig. 2), which is comparable to or better 
than the image quality of icosahedral virus samples recorded on 
photographic film2. Ideally, beam-induced motion should be cor-
rected at the individual particle level during refinement of the 3D 
reconstruction, as demonstrated recently21. However, even using 
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Figure 5 | Final 3D reconstruction of the  
T. acidophilum archaeal 20S proteasome.  
(a) 3D density map of 20S proteasome filtered 
to a resolution of 3.3 Å. (b) Two different views 
of asymmetrical - and -subunits segmented 
from the 3D density map in a. The main chain 
can be traced throughout the entire map.  
(c) Two -helices segmented from the - and  
-subunits showing clear density for the 

majority of side chains. (d) Portion of the 
cryo-EM density map showing clear side-chain 
densities. The docked atomic structure was 
refined to fit the density map by a molecular 
dynamic flexible fitting procedure. (e) The 
same portion of a 2Fo – Fc map of 3.4-Å crystal 
structure calculated using the atomic structure 
(PDB: 1PMA).



Prospects

What we could use: 
• Improved detectors (higher DQE at high resolution) 
• Improved algorithms for conformational separation 
• Improved spatial coherence 
• Improved single particle motion correction 
• Improved specimen preparation (prevent motion)

With the existing instruments and algorithms: 
• Atomic resolution structures of homogenous specimens  
• Sub-nanometer resolution structures of heterogeneous 

specimens 
• Fewer blobs, fewer incorrect structures

Microscopes: 
• 300 kV could be better than 200 kV: 

• Better DDD response 
• Less Ewald sphere curvature 
• Less charging effects 
• (Titan/JEOL 3200) more parallel beam 

• 300 kV not currently needed for most projects 
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alignparts_lmbfgs for β-galactosidase (Sjors Scheres)

Rubinstein and Brubaker (2014). arXiv 1409.6789

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  500  1000  1500  2000  2500  3000  3500  4000
 0

 5

 10

 15

 20

 25


