Where do we go from here?

Handful of sub-nanometer structures (symmetric viruses)

Bottcher, Wynne, Crowther, Nature 1997

Conway et al., Nature 1997

Zhou et al., Nature 2001

Ribosome ~ 10-12Å

Halic et al., Nature 2004

Hey, I saw your blob in Journal X! Cool blob!

Hey, I saw your blob in Journal X! Cool blob!

> Thanks, I spent 3 years working on that blob!

I noticed part of your blob looks... wrong...

I noticed part of your blob looks... wrong...

Oh it probably is... but who cares? It's just a blob!

6Å resolution! I see helical pitch!

6Å resolution! I see helical pitch!

Already solved it, I see side chains!

Well I've got this other complex...

Well I've got this other complex...

Done. 3Å.

Water molecules.

Water molecules.

Water molecules.

Water molecules.

Water molecules.

Competition!

Inheriting the "secrecy culture" of the crystallography community

Huge influx of non-experts wanting to solve structures quickly - validation?

Competition!

Inheriting the "secrecy culture" of the crystallography community

Huge influx of non-experts wanting to solve structures quickly - validation?

Are we there yet?

Are we there yet?

assuming crystallography resolution is "there"

For crystal structures > 200kD: 31% are worse than 3Å resolution 60% are worse than 2.5Å resolution

We can solve larger structures to better resolution ($\sim 1/2$ of above structures are between 200-300kD)

Certainties (Death & Taxes+)

- Higher resolutions (better instruments, better algorithms), for both single particle & tomography
- Sample Prep/ Freezing conditions will be optimized
- High throughput will increase, more structures faster
- Modeling tools will improve
- Lower resolution structures will be harder to get published
- More users, fewer experts
- High profile structures will be solved incorrectly (journals are not yet requiring all necessary validations)

Uncertainties

- Will the EM surge last? Just lots of low-hanging fruit at the moment?
- Will we be able to break 2Å barrier?
- When will a new technology replace EM?
- Will we ever arrive at a true "gold standard" for validation?
- Can we make journals require validation criteria?
- How do we continue to buy & support expensive EM equipment?

Negative Stain? Crosslinking?

- Is negative stain useful? Do we care about 30Å resolution?
- Is negative stain work publishable? Does everyone expect 3Å cryo structures, regardless of complex?
- Does crosslinking affect resolution?

Instrumentation? Data collection software? Data processing software?

Where do we go from here?

Panelists:

- Justin Kollman University of Washington (2 months)
- Frank DiMaio University of Washington (6 months)
- Dan Southworth University of Michigan (3 years)
- David Veesler University of Washington (-1 months)
- Elizabeth Villa University of San Diego, CA (5 months)