Near Atomic Resolution cryoEM: How Far Can We Go?

Melody Campbell & David Veesler

Automated Molecular Imaging National Resource for automated Molecular Microscopy The Scripps Research Institute

Testing the limit of our instruments

- Test specimen
 - Thermoplasma acidophilum 20S proteasome (T20S)
 - 700 kDa, D7 symmetry
 - Kind gift from Yifan Cheng
- FEI Titan Krios
- Different direct detectors
 - FEI Falcon 2
 - Gatan K2 Summit
- Automated pipeline
 - Leginon
 - Appion/Relion

Glaeser R.M. et al. (2011) J Struct Biol.

T20S data set collected using Titan Krios/Falcon 2

Krios/Falcon 2 ext: 4500V gun lens: 4 spotsize: 6 C2: 70 µm Obj: 100 µm beam: 0.9 µm **Microprobe** Isec - 7 frames dose: 26 e/Å² (~50e/pix/sec) 59,000x (1.36 Å/pix) Wait 30 sec before each **exposure**

dosef_driftcorr

Li X. et al. (2013) Nat. Methods

Data collected using a defocus spread comprised between 1.0 μ m and 2.7 μ m

Krios/Falcon 2 statistics

- 1000 micrographs/487,184 particles picked
- Micrograph selection based on ice thickness: Thon rings 6Å resolution or better.
- 103 micrographs/48,023 particles
- Stack cleaning
 - xmipp_mpi_classify_CL2D
 - 45,945 particles

Relion projection-matching & polishing

Krios/Falcon 2 reconstruction

T20S at 3.26 Å resolution using a Falcon 2

T20S data set collected using Titan Krios/K2 Summit

def: 2.0 µm

Krios/K2 (sup-res) ext: 4500V gun lens: 3 spotsize: 8 C2: 70 µm Obj: 100 µm beam: 1.9 µm Microprobe dose: 39 e/Å² ~9cts/pix/sec ~I2e/pix/sec **7.6sec - 38 frames** 22,500x (0.6575-1.315 Å/ pix) Wait 40 sec before each **exposure**

65.8 nm

dosef_driftcorr

Li X. et al. (2013) Nat. Methods

B=1000 pixel²

def: 2.0 μm

Data collected using a defocus spread comprised between 1.1 µm and 2.4 µm

Krios/K2 statistics

- 868 micrographs/419,169 particles picked
- Micrograph selection based on ice thickness: Thon rings 4.5Å or better.
- 138 micrographs/62,551 particles
- Stack cleaning
 - xmipp_image_sort_by_statistics
 - xmipp_mpi_classify_CL2D
 - 51,218 particles

Krios/K2 reconstruction

Frame number

Is 2.9 Å resolution the best we can do?

Avila-Sakar A. et al. (2013) Methods Mol Biol.

A perfectly parallel illumination

 Relion 3D auto-refine	3.0 Å	87.7%
Particle polishing	2.86 Å	92.0%
 Particle polishing 0.98 Å/pixel	2.83 Å	69.2%

T20S at 2.8 Å resolution using a K2

T20S at 2.8 Å resolution using a K2

Some side chain rotamers can be distinguished and adjusted

T20S at 2.8 Å resolution using a K2

Distinguishing between Phe and Tyr start to become possible

How about water molecules?

As a rule of thumb, the number of water molecules expected to be visible in a structure solved by X-ray crystallography is: (3-resolution) x number of residues

How do we know those are water molecules?

- Appropriate chemical environment
- Expected distances for H-bonding (2.8-3.5 Å)
- Visible in the two half maps produced by the goldstandard refinement procedure
- Locations cross-validated by looking at a 1.9 Å X-ray structure of the T20S (1YAR)

Optimal exposure for single-particle

Catalase crystals

Baker L.A. et al. (2010) J Struct Biol.

Single particle

T20S-Krios/Falcon2	3.3 Å	26 e/Ų
T20S-Krios/K2	3.0 Å	39 e/Ų
T20S-TF20/K2	4.4 Å	38 e/Ų
NwV-TF20/K2	3.7 Å	38 e/Ų

without frequency dependent weighting Atlas 81x

Chose 21 grid squares to target

c-flat I µm holes plasma cleaned frozen with cp3

Atlas (Zoom)

8|x

Chose 21 grid squares to target

Thin vs Thick Ice 165x

81x Rejected 6 squares by eye

Atlas

Collected high mag images of 17 squares

Square

165x

Find eucentric height Manually target the most promising looking areas

Target High Mag Images

1700x

Manually target exposures Focus every 4 images Move the stage for each image Wait 40 seconds between each exposure

Adjacent Holes Give Different Quality Images

Adjacent Holes Give Different Quality Images II

#4. - I.4 μ m, Thon rings out to 3.5 Å #5. - I.7 μ m, Thon rings out to 5.6 Å

4. 3.9 5.5 5.7 7.3 3.9 3.6 3.4 3.7 5.5 ✓ 5.4 4.0 3.4 3.5 3.6 3.6 3.7 4. 3.6 3.4 3.8 3.5 3.5 3.6 3.5 6.5 4.0 6.6 5.6 3.8 4.0 4.9 3.7 3.4 5.6 3.6 6.2 3.9 5.0 5.9 4.0 5.4 3.6 3.9 3.5 4.4 4.0 5.0 0 • 7.1 3.7 3.8 3.7 • • • • • **5.2 6.5 6.0 5.6 6.5 4.6 4.9 4.3** 4.8 3.9
3.9 3.5
4.8 4.8 6.1 • • 5.9 8.7 4.8 4.8 4.2 0 0 0 6.1 7.0 3.5 4.7 4.0

0

Where do the "best" images come from?

> 3-3.5Å 3.6-4.0Å 4.6-5.0Å 5.1-6.0Å 6.IÅ+

76 images collected

Atlas 81x

Collected high mag images of 17 squares

Rejected 80% of images (all images that didn't have Thon rings past 4.0 Å)

12 of the remaining 17 had the ''best'' ice

Atlas

8|x

Number of high mag images contributing to "best" 20%

Good vs. Bad Ice

33 of 76 Images Contributed

0 of 59 Images Contributed

Number of Images Contributing to Best 20% of Images vs. Collection Order

Cost of a structure

- Krios time (\$1000/day): \$2000
- Movie frame-alignment (6 cents/gpu hours): ~\$6
- 1000 movies with 38 frames each
- · Data processing (3 cents/cpu hours): \$2437.5
 - Xmipp cl2d: ~\$92
 - Relion preprocessing: ~\$1.5
 - Relion auto-3D-refine: ~\$281
 - Relion movie processing: ~\$948
 - Relion particle polishing: ~\$57
 - Relion auto-3D-refine: ~\$828
 - Relion auto-3D-refine MaxProb: ~\$230
- Fast disk access (\$1,500/Tb/year): ~\$2,750
 - Unaligned (2.1 Tb) + Aligned movies (2.1 Tb)+ Relion files (1 Tb)

• External USB drive (129/4Tb): 258(($7,451.5 \times 3$) + Labor) $\times 2$

Acknowledgements

- Bridget Carragher Clint Potter
 - · Anchi Cheng
 - Sargis Dallakyan
 John Crum
 - Jeff Spier
 - Emily Greene
 - Jana Albrecht
 - Yong Zi Tan
 - Ivan Razinkov

Yifan Cheng • Kiyoshi Egami

The Veesler Lab Coming January 2015

David Veesler

• ???
• ???
• ...you?

Now hiring post-docs!!

