

"Photo 51 x-ray diffraction image" by Raymond Gosling/King's College London

"A proposed structure for the nucleic acids." Linus Pauling 1953

Validation methods have become much better established over the last couple of years.

What are the methods that are being used?

In what resolution realms are they useful?

Do we need more tools? How do we avoid mistakes?

Is validation at very high resolution easier than at intermediate resolutions?

What about highly heterogeneous datasets?

Why is validation important?

- Map validation
- Model validation
- Validation tests often reveal problems that can be resolved

Why is data deposition and exchange important?

- Allows others to check whether research claims are true
- Allows extraction of more information from same data
- Allows structure to be used as input to related projects

Mao et al PNAS (2013) **110**, 12438

Map Validation

- Is map correct (incorrect) at low resolution? (Tilt-pairs for optimization & validation)
- Is resolution assessment exaggerated?
- Simple Tests to Demonstrate Validity of Map
- User still decides how to process the data

PARTICLE IMAGES

STARTING MODEL

De novo determination of "Starting Map"

Map projections agree with individual raw images and class averages (reference free) Distribution of particle orientations

Absolute Hand (Experimental Determination-Tilting)

Other sources for starting map:

Derived from another highly similar structure?

Density from X-ray model? Low-pass filtered

A spherical or cylindrical blob? Icosahedral or helical symmetry

PARTICLE ORIENTATION $\psi, \theta, \phi, \mathbf{x}, \mathbf{y}$

MICROSCOPE PARAMETERS Defocus(3), magnification

MEASURE OF AGREEMENT BETWEEN CALCULATED MODEL PROJECTION AND IMAGE "MINIMIZE PHASE RESIDUAL" $\sum_{i=1}^{i} |\Delta \phi_i F_i|$ (A) Four reference images (each 64 × 64 pixels) used for picking from 1,024 random noise images (of 1,024 × 1,024 pixels).

van Heel M PNAS 2013;110:E4175-E4177

Maximum Likelihood (ML) vs. CC (Align)

Align 50

Structure

Average

First Ref.

Align 3

Align 10

Structure

First Ref.

ML 10

ML 60

ML 120

ML 274

F.J. Sigworth (1998) JSB, 328-339

(A–F) Six individual windowed images from the stack of 423 that was supplied by the authors (21).

Henderson R PNAS 2013;110:18037-18041

Cryo-EM image of a field of view of β -galactosidase single particles (molecular weight, 450 kDa).

Henderson R PNAS 2013;110:18037-18041

а

TILT AXIS FOR EACH PARTICLE PAIR

PHASE RESIDUAL SCORE FOR ALL POSSIBLE TILT AXES

 $(\psi, \theta, \varphi)_{u}$

UNTILTED $(\psi, \theta, \varphi)_{u} \xrightarrow{\text{APPLY}} (\psi, \theta, \varphi)_{t}$

SCORE AGREEMENT WITH TILTED IMAGE "PHASE RESIDUAL"

AVERAGE 50 PARTICLES

Average Phase Residual (PR) 50 Particles

REFINE PARAMETERS USED TO DETERMINE ORIENTATION

- SEARCH PROCEDURE
- MODEL QUALITY
- RESOLUTION RANGE
- RESOLUTION WEIGHTS (TEMPERATURE FACTOR)

- DEFOCUS VALUES
- RECONSTRUCTION RADIUS
- ETC.

RESOLUTION F	RANGE		
	PR+	PR-	ANGLE
100-35 Å	48.3	53.5	6.0deg
80-25 Å	43.4	60.2	11.5deg

ΔPR=7.8 °

 $\Delta PR=16.7^{\circ}$

TILT AXIS FOR EACH PARTICLE PAIR

BEFORE OPTIMIZATION

AFTER OPTIMIZATION

Report for Each Particle

Minimal Phase Residue: **36.77** ° Minimum at position: **3.0°, 10.0°** Hand Phase Difference: **21.03** °

3D model:/home/swasile/Hand/combine_22av_halfp.map2k.mrcUntilted stack:/home/swasile/Hand/e2f301982.partpadred.mrcTilted stack:/home/swasile/Hand/e2f301983.partpadred.mrcParameters file:/home/swasile/Hand/e2_1982u_96.par

Experiment identifier: Sample demo job

Average for all particles submited:

Magnification Defocus Astigmatism	4.98 A/px 58626 ; 59084 55.7	Minimal Phase Residue: 39.26 ° Minimum at position: 2.0°, 9.0° Hand Phase Difference: 14.13 ° Average distance from the mean minima: 5.25 °
Voltage	300 kV	Particles with the hand difference below the average:
Resolution Interval	100.0 - 30.0 A	2 7 9 11 12 14 15 17 19 20 21 24 26 30 32 35 36 38
Tilt Interval	20	41 45
Particle radius	20 px	Particles with minima distant from the determined tilt
Optimized box size :	128	transfromation:
Effective binning:	1	1 8 10 11 15 18 23 30 35 36 37 40 47 49
		Particles contributing to the determined minimum: 0 3 4 5 6 13 16 22 25 27 28 29 31 33 34 39 42 43 44

46 48

VIEW DETAILED REPORT

www.cryomicroscopy.org

Sebastian Wasilewski

An incorrect model

"Self" Untilted orientations vs. untilted images

Data from Lau & Rubinstein (2010);

Williams et al (2007)

Pyruvate dehydrogenase, E2CD

Chicken anemia virus, CAV

Data from Rosenthal & Henderson (2003);

Crowther et al (2003)

Specimens and tilt pairs by Lori Passmore (empty 70S)

and Luciano Ciccarelli (FAS)

Yeast fatty acid synthetase (FAS)

Rotavirus (T=13, MW 50MDa) tilt pair images: James Chen & Niko Grigorieff, Brandeis

Rotavirus 50MDa : 10 tilt pairs, Chen & Grigorieff

Film pair	<tang> (sd)</tang>	Nom. TANG
N1001/2	+3.83 (±0.20)	+5.0
N1003/4	+4.50 (±0.21)	+5.0
N1007/8	-4.24 (±0.39)	-5.0
N1009/10	-5.67 (±0.33)	-5.0
N1011/12	-10.4 (±0.44)	-10.0
N1013/14	-8.07 (±0.63)	-10.0
N1015/16	+8.67 (±0.45)	+10.0
N1017/18	+9.34 (±0.53)	+10.0
N1019/20	+8.83 (±0.81)	+10.0
N1021/22	-21.14 (±0.95)	-20.0

Table 2 – overview of TPPP (tilt pair parameter plot) statistics

Specimen	Symmetry	Particle size	Molecular Weight	Number of tilt pairs	Number of particles	Successful alignment (%)	Mean/maximum angular error (degs)	
Rotavirus DLP	12	700 Å	50 <u>MDa</u>	10	95	100/100	0.25	1.0
Norwalk virus	I1	420 Å	10 <u>MDa</u>	1	51	98	1.5	2.5
HdH	D5	550 Å	8 <u>MDa</u>	3	45	78	1.5	3.0
CAV	I2	255 Å	2.7 <u>MDa</u>	1	45	62/82	2.5	3.5
FAS	D3	260x220 Å	2.6 <u>MDa</u>	2	44	59/95	4.0	6.0
70S ribosomes	C1	270x260 Å	2.6 <u>MDa</u>	12	220	45/75	4.0	5.0
PDH-E2CD	I1	280 Å	1.6 <u>MDa</u>	1	50	62/94	3.0	4.0
Thermus V-ATPase	C1	250x140 Å	0.6 <u>MDa</u>	1	50	54/80	10.0	16.0
Bovine F-ATPase	C1	250x140 Å	0.6 <u>MDa</u>	1	29	52/79	20.0	25.0
DNA-PKcs	C1	150x120 Å	0.47 <u>MDa</u>	14	108	44/81	15.0	17.0
β-galactosidase	D2	<u>180x130x95 Å</u>	0.45 <u>MDa</u>	2	119	74/91	10.0	14.0

What resolution range should I use to reifne orientations?

Frequency-limited refinement does not lead to worse orientations.

PDBe Tilt-Server

Tilt pair validation server

Welcome to the PDBe tilt pair validation server!

Tilt-pair validation analysis (<u>Rosenthal and Henderson, 2003</u>) can be used to assess the accuracy of initial angle assignment in single-particle processing. To perform this analysis you need to collect two corresponding sets of particle images - one untilted and the other tilted, then upload the stacks of images along with a 3D reconstruction based on the untilted images. This server is based on the <u>Tilt-pair server</u> developed at MRC National Institute for Medical Research (<u>Wasilewski and Rosenthal, 2014</u>), and we thank Sebastian Wasilewski and Peter Rosenthal for their help in developing and testing the current server.

You may upload map files in MRC or CCP4 format, and parameter files (containing Euler angles for individual particles) in Spider or Frealign format. We have some test data sets that you can use to try out the service <u>here</u>. We are still developing the server and appreciate your <u>feedback</u>!

Map (3D volume)	Browse No file selected.	0	
Untilted stack	Browse No file selected.	0	
Orientation parameters for stack 1	Browse No file selected.	Frealign 💠 🚱	
Tilted stack	Browse No file selected.	0	
Pixel size (Å)			
Mask radius (pixels)	•		
Tilt search range (degrees)	20		
Resolution range (low to high; Å)	100	20	0
Email address			
Job name			
Perform CTF correction?			

Accuracy of particle alignment (Baker & Rubinstein, PNAS 2012)

TILTSTATS (Russo and Passmore, JSB 2014)

$$f(\omega) = e^{\kappa \cos \omega}$$

 K > 10

 Rotavirus
 8200

 70S
 2661

 PDH
 175

Application of Tilt-Pairs

- Learn how to optimize orientation determination for your molecule, map, and images
- Does tilt-pair parameter plot match map resolution?
- Validate a map
- Tilt-pairs for whole dataset, e.g. heterogeneity
- Negative-stain problems

Do we need to do tilt-pairs at high resolution?
MAP RESOLUTION

Resolution Measures

- FSC
- Rmeasure
- Resmap
- Bootstrap
- 3D variance estimates

Map Resolution Should Be Reported, and Visible Structural Features Should Be in Accordance with the Claimed Resolution

Fourier Shell Correlation: Show the whole curve.

Visibility of expected features – α-helices visible at 9 Å resolution? β-strands at 4.8 Å resolution? Side-chains beyond 4 Å?

Signal~Noise FSC=0.5

 $=\frac{2FSC}{1+FSC}$ FSC_{full}

Correlation with a perfect reference

Looks like figure-of-merit (Blow and Crick, 1959)

Estimating C_{ref}

$$C_{ref} = \sqrt{\frac{2FSC}{1 + FSC}}$$

C_{ref}=0.5 FSC=0.14

C_{ref} corresponds to crystallographic FOM "Figure of Merit"

C_{ref}=0.5 mean phase error 60 ° (last shell) interpretable by an atomic model

FSC	FSC _{FULL}	C _{REF}	PHASE ERROR	S/N _{1/2}
0.50	0.67	0.82	35°	1.00
0.33	0.50	0.71	45°	0.71
0.14	0.25	0.50	60°	0.41

FSC between Map and Model (C_{ref})

RADIALLY-AVERAGED EM MAP AMPLITUDES COMPARED TO X-RAY

Contrast Restoration

Incorrect Scaling of High and Low Resolution Amplitudes makes map looks featureless

Problem: Application of a negative temperature factor amplifies both signal and noise

Suppress Noise by using Noise-Weighted Structure Factors C_{ref}F Similar to Figure-of-Merit weighting

F

PREVENTING AND DETECTING OVER-FITTING (Validating Resolution)

R_{free} in X-ray validation

The pitfalls of undetected overfitting (typical practice until ~2011)

- 20,000 simulated GroEL particles
- Conventional projection matching

FSC between map and (perfect) model at FSC = 0.5

FSC between two independent half data sets at FSC = 0.143

U.S. | NYT NOW

Facing Challenge to Execution, Texas Calls Its Process the Gold Standard

By MANNY FERNANDEZ and JOHN SCHWARTZ MAY 12, 2014

Use gold-standard FSC calculation (i.e. process data as two <u>completely independent</u> halves - this means independent starting models, refinement and masking)

(Scheres & Chen, 2012)

Refinement of two independent models or frequency-limited refinement do not lead to worse orientations or resolutions.

Refinement of two independent models or frequency-limited refinement do not lead to worse orientations or resolutions.

HIGH RESOLUTION NOISE SUBSTITUTION

Perform Single Particle EM analysis.

Repeat but substitute random phases beyond a selected resolution (HR-noise)

Any overfitted noise will show up as non-zero FSC.

Genuine information will show up as the area between the two curves

Resolution (1/Å)

MODELS

Assessing Single Particle Model

- High Resolution Features Look Like Proteins
- Lower Resolution Agreement with an X-ray Structure
- Explanation of Experimental Data
- Biological Prediction
- Unbiased Procedures
- Cross Validation
- Communicating Results

Fitting one component X-ray model into EM map may define absolute hand and also validate the map calculation. Fold/shape at lower resolution.

Fitting may be assisted by experimental absolute hand determination (include another specimen of known hand)

Backbone/Side chains

Refinement of protein model against map agreement with map stereochemistry of model several observation to refinable parameters

Connection to X-ray validation

Fitting low resolution map with X-ray model

CHALLENGES

Heterogeneity

Good?

Do tomography on everything!

Is it OK to present a model that represents a small percentage of the particles?

What is going on with the rest of the dataset?

Tilt-pairs
Tomograms

- Resolution Estimate
- Missing-wedge
- Sub-tomogram averaging

Helices

• Power spectrum of sum of filaments

Map validation

Visibility of expected features – α -helices visible at 9 Å resolution? β -strands at 4.8 Å resolution? Side-chains beyond 4 Å?

Tilt pair validation to show orientations are correct – check that orientation determination is working by collecting one or two tilt pairs and calculating a tilt pair parameter plot (TPPP) to show clear clustering of most particles around the tilt angle and axis used.

Resolution validation – (a) use gold-standard FSC calculation (i.e. process data as two <u>completely independent</u> halves - this means independent starting models, refinement and masking); (b) perform high resolution noise substitution and compare FSC curves of raw data with HR-noise substituted data.

Ensure you can "see" your particles – for small or very small particles, record initial images at high (5 μ m) defocus and high (60-120 el/Å²) dose. Avoid the "Einstein from noise" pitfall by initial manual or local-variance-based (i.e. not CCF) particle picking.

DO DETECTORS CHANGE THINGS?

Four informative validation tests (from Chen et al, 2013) (a) Map/model superposition (b) Map/model FSC

Tilt Pair Parameter Plot

(b) Map/model FSC 1.0 FSC Relion map vs 3i3e FSC (vs Jelly body) 0.0 0.05 0.10 7.2Å 7.5Å 7.5Å 7.5Å 0.15 0.20 Resolution(1/Å)

(d) High-resolution noise substitution

MRC National Institute for Medical Research Mill Hill, London

MRC Laboratory Molecular Biology, Cambridge Richard Henderson

PDBe, European Bioinformatics Institute Ardan Patwardhan

Outcome of the First Electron Microscopy Validation Task Force Meeting

Richard Henderson,¹ Andrej Sali,² Matthew L. Baker,³ Bridget Carragher,⁴ Batsal Devkota,⁵ Kenneth H. Downing,⁶ Edward H. Egelman,⁷ Zukang Feng,⁵ Joachim Frank,^{8,9} Nikolaus Grigorieff,¹⁰ Wen Jiang,¹¹ Steven J. Ludtke,³ Ohad Medalia,^{12,21} Pawel A. Penczek,¹³ Peter B. Rosenthal,¹⁴ Michael G. Rossmann,¹⁵ Michael F. Schmid,³ Gunnar F. Schröder,¹⁶ Alasdair C. Steven,¹⁷ David L. Stokes,¹⁸ John D. Westbrook,⁵ Willy Wriggers,¹⁹ Huanwang Yang,⁵ Jasmine Young,⁵ Helen M. Berman,⁵ Wah Chiu,³ Gerard J. Kleywegt,²⁰ and Catherine L. Lawson^{5,*}

2015 Map and Model Challenges

- Goal: develop community-accepted map and model validation criteria
- Two working groups composed of 3DEM community members will define test cases and format of each challenge
 - Bridget Carragher: map validation chair
 - Paul Adams: model validation chair
- Test cases from deposited/publicly available data
- Formulation and announcement of the challenges by early 2015

