Structural Studies of an AAA+ ATPase N-ethylmaleimide Sensitive Factor

Minglei Zhao

Axel Brunger Lab Stanford University Yifan Cheng Lab University of California, San Francisco

NRAMM Workshop, November 10th, 2014

Outline

[This talk will highlight the biology while also drawing attention to the technical advances that made it possible.]

The Nobel Prize in Physiology and Medicine (2013)

"for their discoveries of machinery regulating vesicle traffic, a major transport system in our cells"

SNARE mediated vesicle/membrane fusion

Nature Reviews | Molecular Cell Biology

Chen et al., 2001

SNAREs involved many fusion systems

Copyright © 2006 Nature Publishing Group Nature Reviews | Molecular Cell Biology

Jahn R, et al., 2006

SNARE mediated neurotransmitter release

Nature Reviews | Molecular Cell Biology

McMahon HT, et al., 2006

Synaptic vesicle fusion cycle

N-ethylmaleimide Sensitive Factor (NSF)

- First purified in 1988 by James Rothman's group from CHO cells (Block *et al.*, *PNAS*, 1988).
- One of the first identified machinery involved in vesicle traffic.
- AAA+ superfamily member, homomeric hexamer, ~500 kDa.
- Very conserved in eukaryotes:

Organism	Identity to Human (%)
Baker's yeast	46
Arabidopsis	45
Worm	54
Fruit fly	63
Mammal	99

N-ethylmaleimide Sensitive Factor (NSF)

Yu *et al.*, *NSMB*, 1998 Lenzen *et al.*, *Cell*, 1998

NSF interacts with SNAREs via SNAPs

SNAP (Soluble NSF Attachment Protein) SNARE (SNAP Receptors)

yeast homolog Sec17p

Rice et al., Mol. Cell, 1999

Core of the neuronal SNARE complex (Synaptobrevin2-Syntaxin1-SNAP25)

Sutton et al., Nature, 1998

Previous EM Reconstructions of NSF

Cryo-EM reconstruction of 20S at ~ 12 Å (Furst et al., EMBO J, 2003)

Cryo-EM reconstruction of NSF at lower resolution (Chang et al., NSMB, 2012)

NSF crystals diffract to ~ 8Å

NSF crystal diffraction using X-ray free electron laser (xFEL)

CXI station, LCLS

NSF crystal diffraction using X-ray free electron laser (xFEL)

XPP station, LCLS

3D reconstruction of ATP-bound NSF by single-particle cryo-EM

3D reconstruction of ATP-bound NSF by single-particle cryo-EM

Maps of ATP-bound NSF

Structural features of ATP-bound NSF

Structural features of ATP-bound NSF

Model of the D1 domain

D1 ring of ATP-bound NSF is like a "split washer"

Nucleotide-binding pockets of the D1 domains

Superposition of the D1 domains

3D reconstruction of ADP-bound NSF by single-particle cryo-EM

3D reconstruction of ADP-bound NSF by single-particle cryo-EM

Maps of ADP-bound NSF

D1 ring of ADP-bound NSF is an "open flat washer"

Upon ATP hydrolysis:

- Slight open of the D2 ring.
- Wide open of D1 ring.
- Flipping down of two N domains.

Superposition of the D1 domains

Conformational change of D1 domains upon ATP hydrolysis

Outward movement of the D1 ring upon ATP hydrolysis

Single-particle cryo-EM vs. X-ray crystallography (personal experience)

	X-ray	cryo-EM
Sample preparation	Crystals!	Crystals?
Data collection	Mostly remote 10 min/dataset 360 degree	Remote? 1~2 days/dataset How much is enough?
Data processing	Concurrently to Several hours	1 week?
Model building	COOT Methods for low resolution model building	COOT? More tools needed!
Cross-validation	Rwork/Rfree	Better methods?

Model validation of ATP-bound NSF

