
Workshop on Advanced Topics in EM Structure Determination: Where do we go from here?

Challenges remaining for specimen preparation

The Scripps Research Institute La Jolla, November 2014

Single-particle EM workflow

Why do we need specimen preparation?

Biological specimens consist of up to 80% of water

→ COLLAPSE OF STRUCTURE because of dehydration in EM vacuum

stain embeddingBUT: resolution limitationvitrificationBUT: low contrast

Biological specimens consist of light atoms, such as C, N, O, H

→ LOW CONTRAST because electron scattering ~ atomic number Z

stain embeddingBUT: resolution limitationhigh defocusBUT: CTF correction required

 \rightarrow **BEAM DAMAGE** because $\sigma_{el}/\sigma_{in} = Z/19$ (~ 2 inelastic per elastic scattering event)

short exposuresBUT: noisy images (low signal-to-noise ratio, SNR)low temperatureBUT: only reduces the effects of beam damage

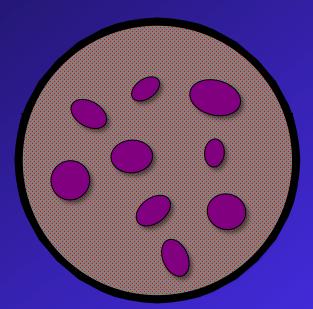
Bottom line: negatively stained specimens: limited resolution but better SNR vitrified specimens: "unlimited" resolution but poor SNR

Preparing good grids

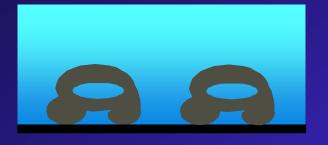
Specimen preparation

EM grid (copper, gold, molybdenum new materials → Lori Passmore)

Carbon film


(continuous or holey; new substrates → Lori Passmore)

Apply specimen (usually with pipette; new approach: Spotiton → Clint Potter


Negative staining


Ice embedding (vitrification)

Negative staining

Ohi et al. (2004) Biol. Proced. Online 6: 23-34

Stains:

uranyl formate (finer grain, but unstable) uranyl acetate (coarser grain, but stable)

- higher contrast and radiation-resistant
- but acidic (pH ~4) note, however, it also functions as fixative !

sodium silicotungstate sodium phosphotungstate ammonium molybdate

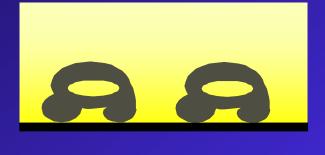
- aurothioglucose
- neutral pH
- but lower contrast and less radiation-resistant

Negative staining

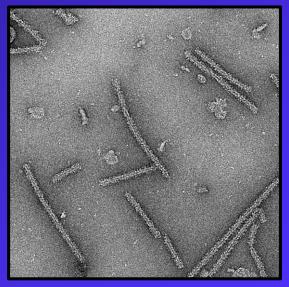
Ohi et al. (2004) Biol. Proced. Online 6: 23-34

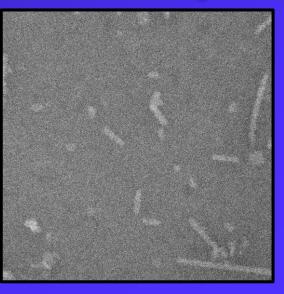
Stain embedding:

thin staining better for 2D analysis

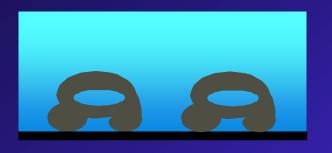

better contrast (important for small proteins)

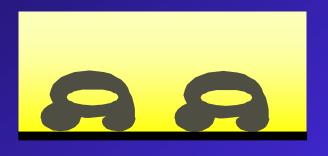
thick staining better for 3D analysis


- better representation (important for 3D features)


thin staining

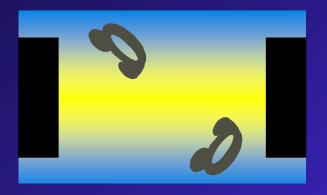
thick staining



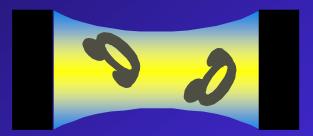

Negative staining

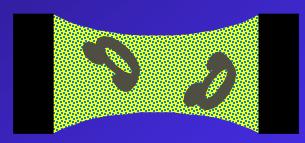
Ohi et al. (2004) Biol. Proced. Online 6: 23-34

Pros:


- easy and quick
- good contrast
- induces preferred orientations

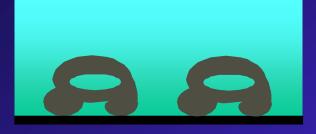
- limits resolution to ~20 Å
- introduces artifacts
 - incomplete stain embedding
 - adsorption deformation
 - specimen flattening upon drying
- induces preferred orientations


Cryo-negative staining approach 1 Adrian *et al.* (1998) *Micron* <u>29</u>: 145-160



Pros:

- good contrast
- induces random orientations
- less preparation artifacts


Freezing: prevents specimen flattening

- limits resolution to ~20 Å
- induces random orientations
- high ionic strength can cause complexes to dissociate

Cryo-negative staining approach 2 De Carlo & Stark (2010) *Methods Enzymol.* <u>481</u>: 127-145

Pros:

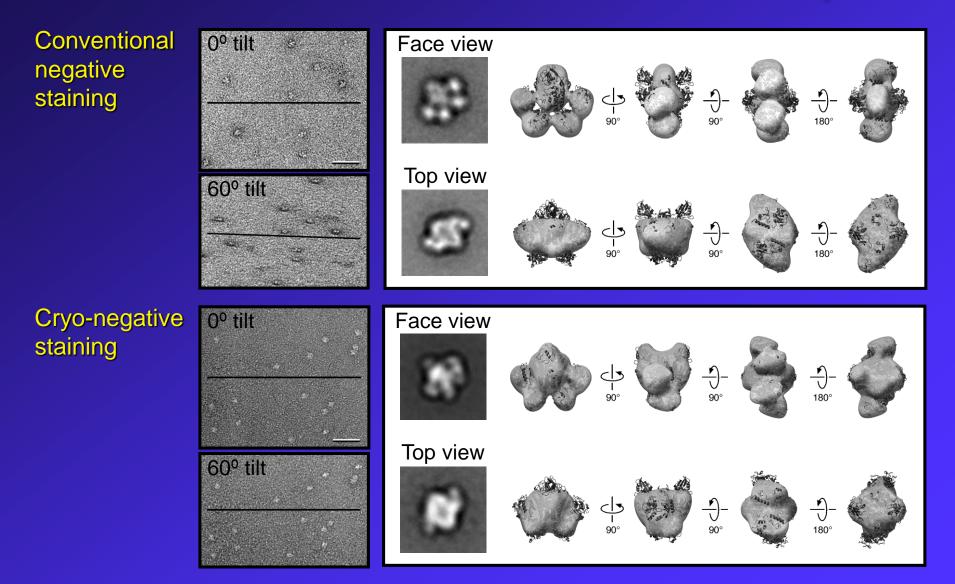
- good contrast
- induces preferred orientations
- less preparation artifacts

Addition of glycerol:

- minimizes adsorption artifacts
- minimizes specimen flattening
- serves as cryo-protectant

Carbon sandwich:

reduces incomplete stain embedding

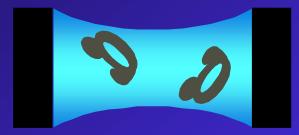

Freezing:

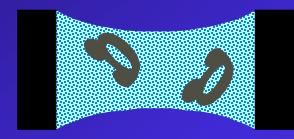
prevents further specimen flattening

- limits resolution to ~20 Å
- induces preferred orientations
- really, really painful !!!

Conventional versus cryo-negative staining

Random conical tilt reconstruction of the Tf-TfR complex


Vitrification


Adrian et al. (1984) Nature 308: 32-36

Pros:

- near-native conditions
- no limitation on resolution
- induces random orientations

- low contrast
- not very reproducible
- more tedious
- induces random orientations

What is a good cryo-EM grid?

good amorphous ice

- not crystalline ice
- no "leopard skin" pattern
- no contamination

appropriate ice thickness

- typically as thin as possible

clearly visible particles

- particle size and shape
- buffer composition
- defocus, movie mode, phase plates

good particle distribution

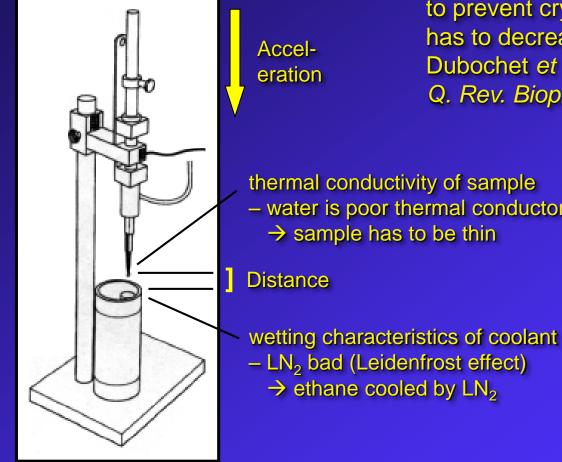
- in holes
- dense but particles not touching
- randomly distributed orientations

Variables in grid preparation

grid

- type of grid and substrate
- batch and age of grid
- glow discharging

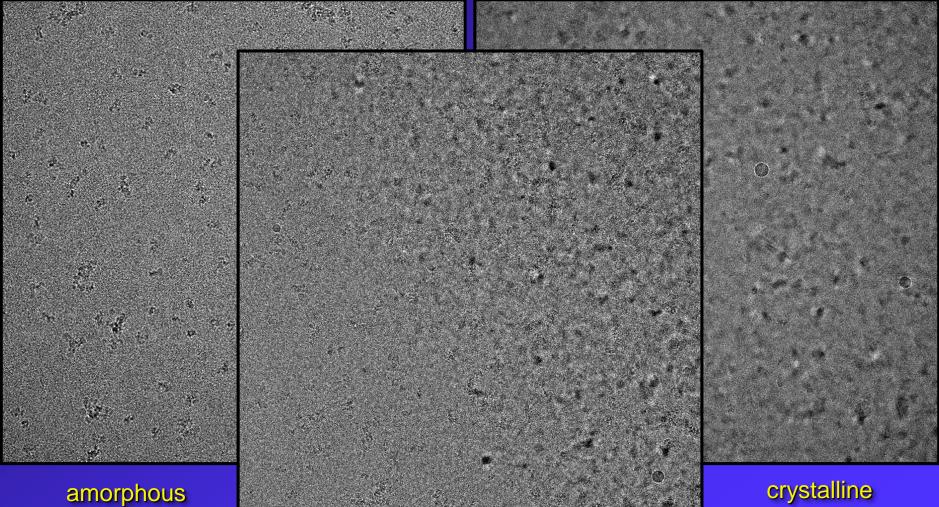
sample


- concentration
- buffer composition
- detergent or "others"

freezing (blotting & drying)

- blotting time (physical water removal)
 - single- or double-side blotting
- waiting time (evaporation)
 - temperature & humidity
- multiple sample applications

Good amorphous ice


Not crystalline ice

to prevent crystallization, temperature has to decrease faster than 10⁵-10⁶ K/s Dubochet et al. (1988) Q. Rev. Biophys. 21: 129-228

- water is poor thermal conductor

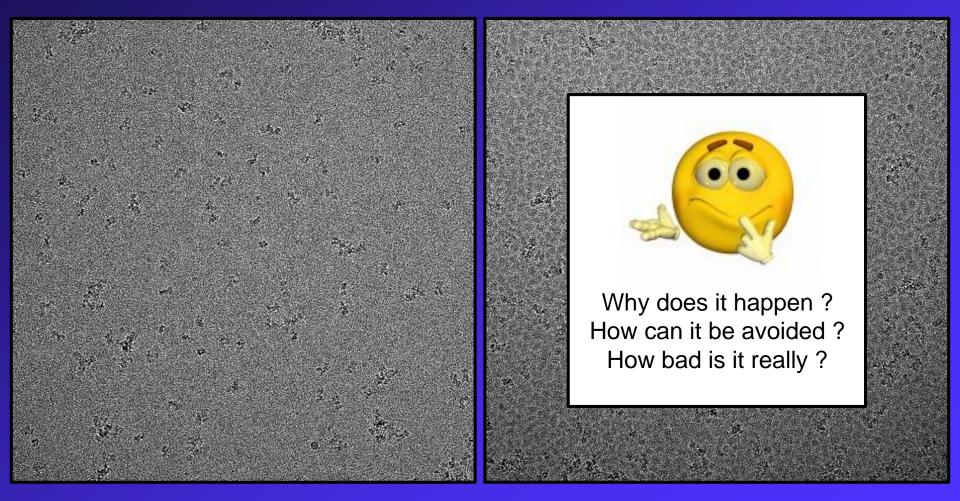
Good amorphous ice Not crystalline ice

crystalline (hexagonal)

Good amorphous ice

Not crystalline ice

Homemade Plungers



Gatan Cryoplunge

Good amorphous ice No "leopard skin" ice

"normal" ice

"leopard skin" ice

Good amorphous ice

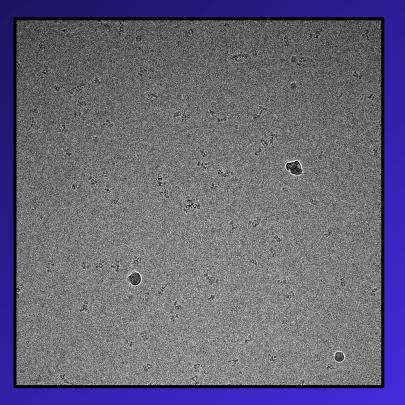
No "leopard skin" ice

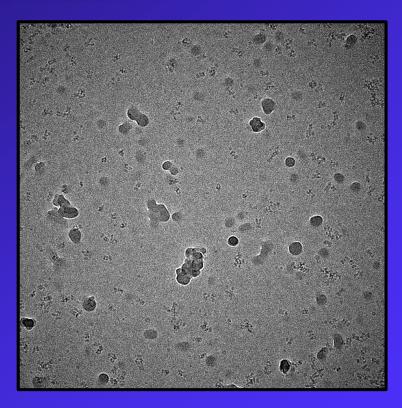
aka: alligator ice snake skin ice turtle ice

3D EM list

The leopard skin is comprised of nano-ice/salt crystals, they might come from slow ice contamination in high vacuum environment with small leaks which were observed by number of labs, and another possibility is the solution containing certain type of salts/agents which are precipitated or crystallized during freezing, the third one could be the cooling liquid was too 'warm'.

You may try to freeze your sample at different lab or freeze a simple buffer like 20 mM NaCl using your Vitrobot.

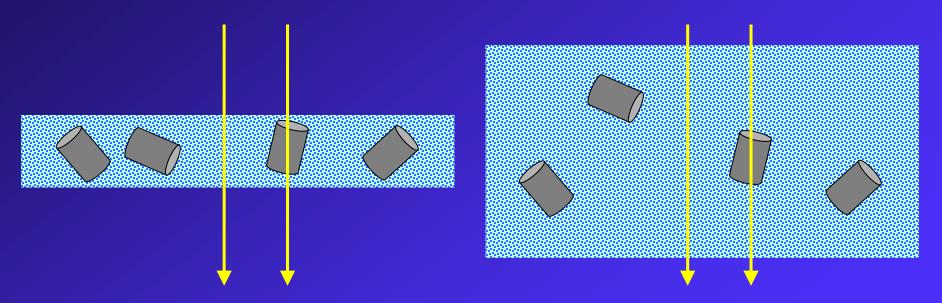

Shall we discuss ?


We would see it from time to time, occasionally when an ethane tank was nearing empty. As such we attributed to impurities that impeded freezing. It could also be just something in the buffer or sample that alters the freezing.

My experience is also that it comes and goes and does not have much to do with the vitrification itself or the grids. More likely to me is also mild exposure to "warm" air or surfaces during transfer. Having the goniometer opened and closed during inspection also sometimes affected the behaviour. My latest trick is pre-pumping the airlock on our T20 more than once before transfer of the holder.

I believe the reason is minor exposure to warm & moist air, typically during the transfer of the cryo holder.

Good amorphous ice No contamination



- can happen during grid transfers due to air humidity
 - → fast transfers
 - \rightarrow low-humidity environment
- can be due to water in LN_2 used for grid preparation or storage \rightarrow use narrow neck dewars and keep dewars dry

Appropriate ice thickness

Thin ice is usually better

density of protein:~1.36 g/cm³density of pure water:1.00 g/cm³

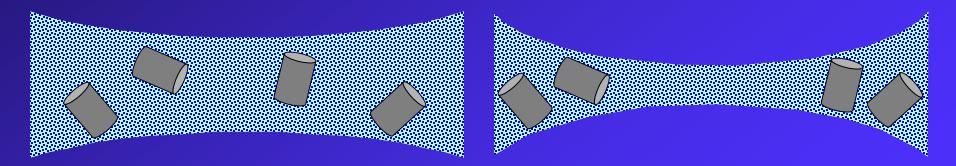
thin ice provides better contrast, which is especially important for small proteins

Appropriate ice thickness

Factors that affect ice thickness

- thickness of the carbon film
 - \rightarrow can be increased by evaporating extra carbon on grid
- hydrophobicity of carbon film
 → can be changed by glow discharging
- blotting
 - \rightarrow time of blotting
 - \rightarrow single- or double-sided blotting
- time between blotting and freezing (evaporation)
 - \rightarrow can be controlled by temperature and humidity
 - \rightarrow however: only water evaporates \rightarrow changes buffer

Optimal combination has to be determined empirically for every new sample (and grid batch)


Appropriate ice thickness

Why thicker ice can sometimes be better

complexes to adopt preferred orientations

air/water interface can induce proteins to denature or complexes to dissociate

problem greater for samples with detergents (lower surface tension)
 problem can be alleviated by using carbon with a smaller hole size

Clearly visible particles

Factors that affect visibility of particles (contrast)

- particle size and shape

 \rightarrow need to scatter sufficient electrons to be visible

(even if particles can be seen, it does not mean that they can be aligned)

 \rightarrow globular particles are easier to see than extended particles of same MW

ice thickness

 \rightarrow should be as thin as possible

- buffer composition

→ density of protein: density of pure water: density of glycerol:

1.36 g/cm³ 1.00 g/cm³ 1.26 g/cm³

beware of high concentrations of:

- glycerol
- sugars
- salt
- detergent

Clearly visible particles

How to improve the visibility of particles (contrast)

negative staining

 \rightarrow all the known problems (limited resolution, deformations, ...)

- − high defocus
 → limits achievable resolution
- record long movies
 - \rightarrow use full movie for processing
 - \rightarrow use less (or weigh) frames for final reconstruction (RELION version 1.3)

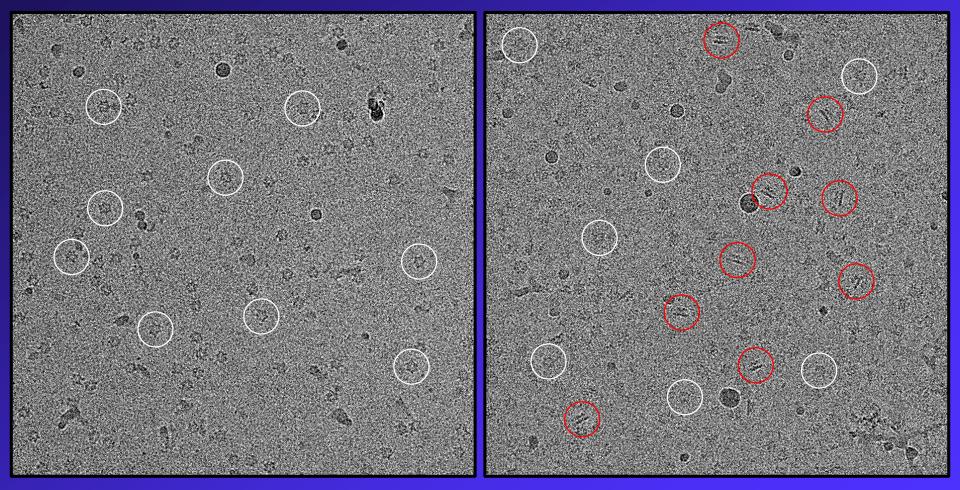
- phase plates

 \rightarrow presentations by Rado Danev and Wah Chiu

Why are the bloody particles not in the bloody holes ? And how can I get them there ???

- sample is too dilute
 - \rightarrow use higher protein concentration
 - \rightarrow adsorb to a thin carbon (or graphene) film or a lipid monolayer
- protein/complex prefers to stick to carbon film
 - \rightarrow change grid batch or vary glow discharge conditions
 - \rightarrow adsorb to a thin carbon (or graphene) film or a lipid monolayer
 - → <u>apply specimen twice</u>
- protein/complex is too big for the thickness of the carbon film
 - \rightarrow evaporate carbon onto holey carbon grid
- protein/complex denatures or dissociates on air/water interface
 - \rightarrow use chemical fixation
 - \rightarrow adsorb to a thin carbon (or graphene) film or a lipid monolayer

Notes: – carbon film and lipid monolayer will reduce image contrast – adsorption to any substrate can induce preferred orientations

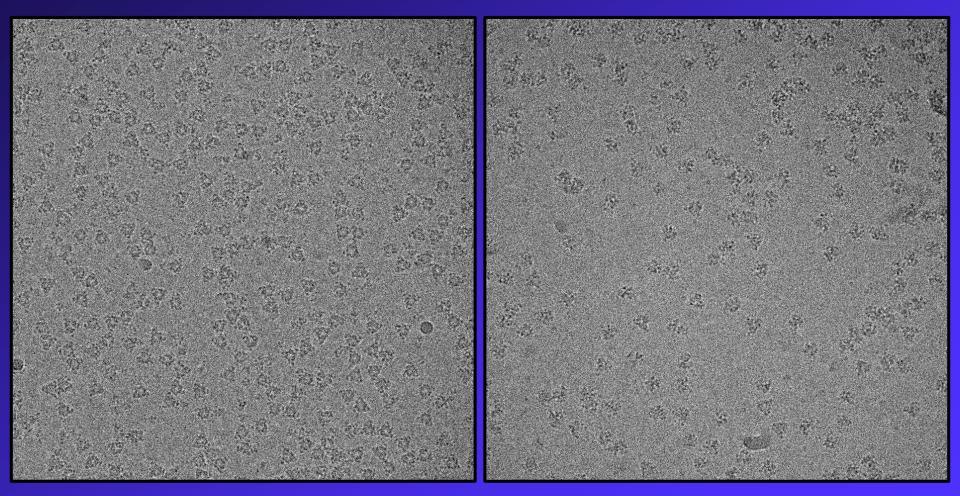

Factors that affect particle distribution

- sample concentration
 - \rightarrow not linear
- ice thickness
 - \rightarrow varies across the grid and even within a hole
 - more problematic for samples containing detergent (possible advantage of using amphipols and Nanodiscs)
- buffer composition
 - \rightarrow aggregation through ionic interactions
 - \rightarrow change salt concentration
 - \rightarrow aggregation through hydrophobic patches
 - \rightarrow add detergent

What to do when the particles adopt preferred orientation

- try thicker ice

What to do when the particles adopt preferred orientation


thick ice

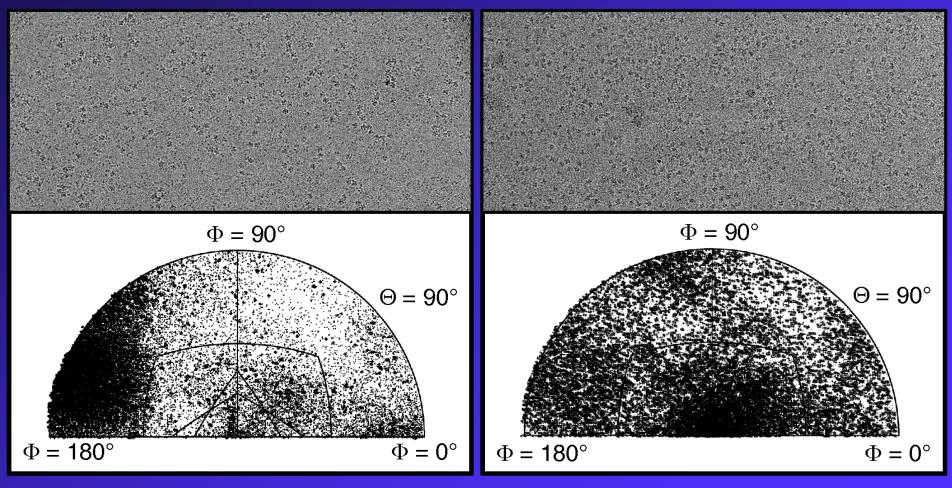
What to do when the particles adopt preferred orientation

- try thicker ice

- try to add some detergent

What to do when the particles adopt preferred orientation

without detergent

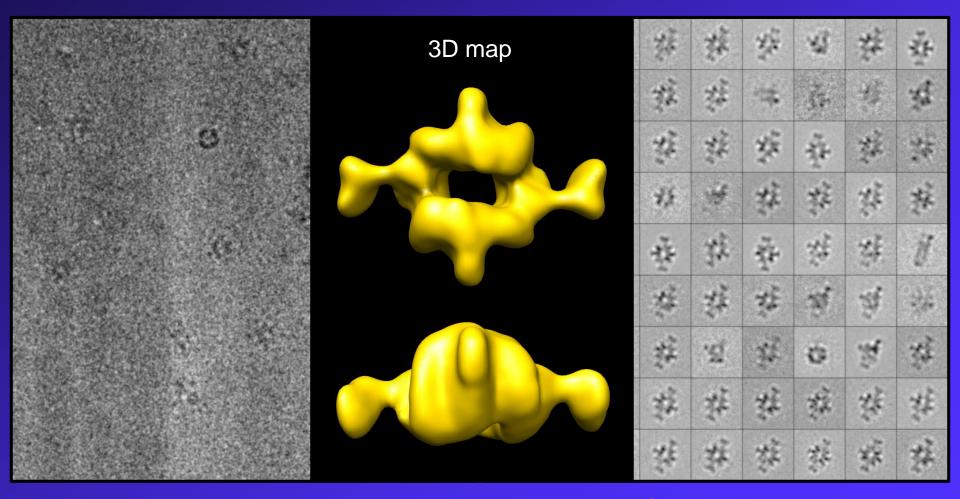

with detergent

What to do when the particles adopt preferred orientation

- try thicker ice

- try to add some detergent
- try to adsorb to a substrate

What to do when the particles adopt preferred orientation


without carbon

on thin carbon

What to do when the particles adopt preferred orientation

- try thicker ice
- try to add some detergent
- try to adsorb to a substrate
- try to change the buffer composition
- try to change glow discharge conditions
- try to add tags to the protein
- give up and tilt the bloody grid
 - ... Have fun !
 - ... Kiss your high resolution good-bye !

What to do when the particles adopt preferred orientation

class averages

raw image (on film)

The perfect grid

High-contrast particles that are perfectly distributed and adopt randomly distributed orientations

The best images Thon rings in all directions beyond the Nyquist frequency

The ideal processing You made it all the way to the "Publish" button in RELION

Nice map ... but where are the side chains ???

Preparing good protein (for EM)

What is good protein for EM?

size

the bigger the better ~250 kDa currently minimum for near-atomic resolution

symmetry

the higher the better pseudo-symmetry can be problematic

shape

globular better than extended "extra features" highly beneficial

homogeneity

the more homogeneous the better, but heterogeneity now more manageable due to – better image quality (DDD cameras) – new software tools (e.g., 3D classification)

What is good protein for EM?

best case scenario:

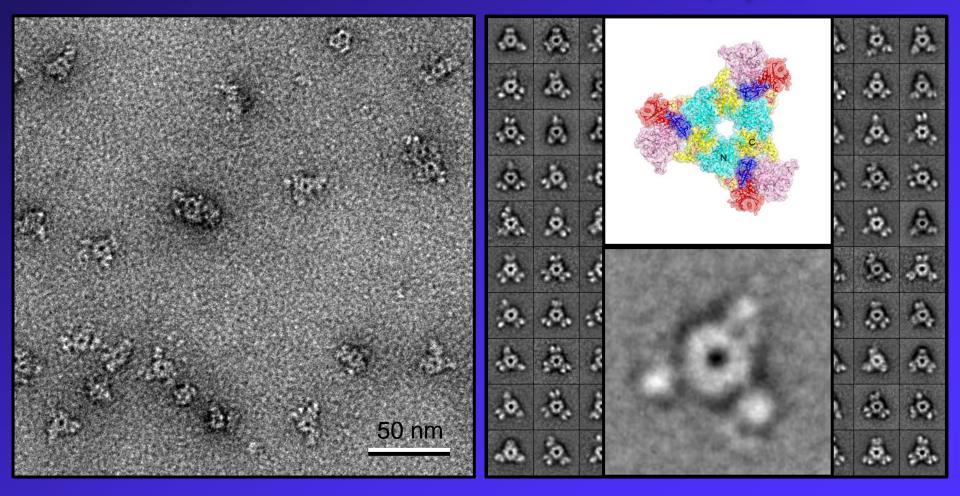
large, globular and highly symmetric molecule with little heterogeneity \rightarrow viruses, virus-like particles

→ atomic model almost guaranteed

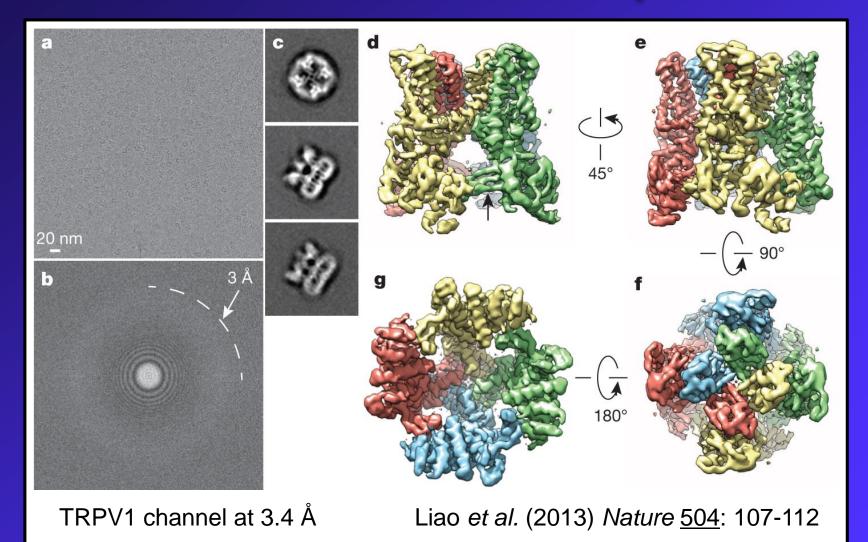
typical samples ----> resolution ???

Shall we discuss ?

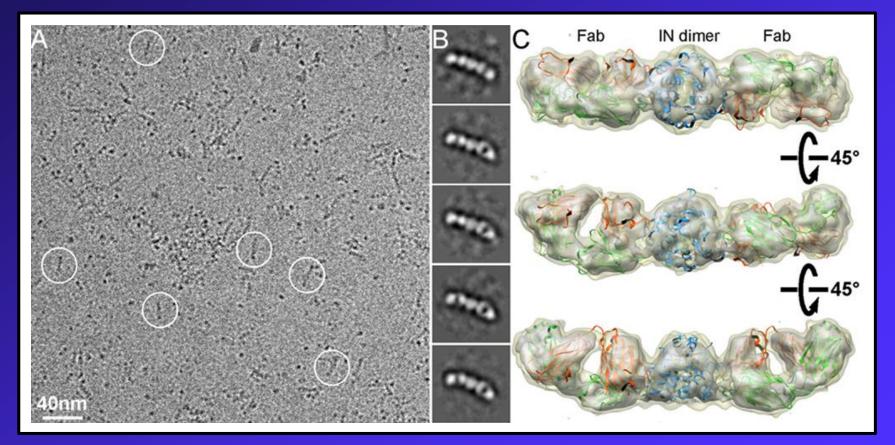
worst case scenario:


small, extended and asymmetric molecule with high degree of heterogeneity
 → our samples (tethering complexes, cell-surface receptors, etc.)
 → condemned to negative-stain EM studies

different characteristics can compensate for each other


- a large molecule does not need high symmetry \rightarrow e.g., ribosome
- a large molecule can tolerate some heterogeneity \rightarrow e.g., ribosome
- a highly symmetric molecule can be smaller \rightarrow e.g., some filaments

Big and oligomeric is not always enough for cryo-EM !


Long-chain acyl-CoA carboxylase 120 kDa, hexamer → 720 kDa Tran *et al.* (2014) *Nature*, in press

Small is not what it used to be for cryo-EM !

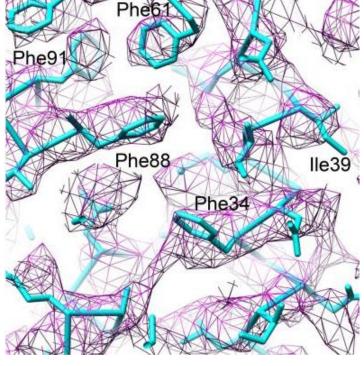
What if the protein is well-behaved but too small ? Fab labeling – Wu et al. (2012) *Structure* <u>20</u>: 582-592

HIV-1 integrase dimer (~65 kDa) in complex with two Fabs (total of ~165 kDa) at a resolution of 13.3 Å (FSC = 0.5), 10.2 Å (FSC = 0.143)

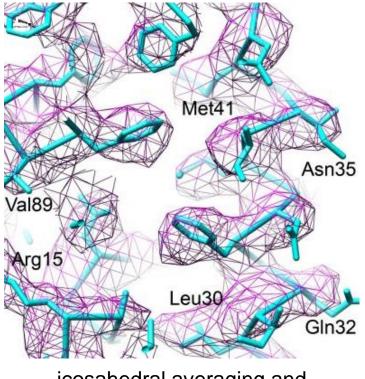
What if the protein is well-behaved but too small ? Fab labeling – Wu et al. (2012) *Structure* <u>20</u>: 582-592

Fab labeling is a powerful approach for small proteins

- Fab increases particle size
- Fab adds an additional marker for alignment
- Fab density provides an inherent quality control of the 3D reconstruction


It can be tricky to find a suitable Fab

- (usually) should not affect protein function
- should have tight binding (low off rate)
- should not introduce structural variability


Protein symmetry

True symmetry is always helpful

Rotavirus double-layer particle

icosahedral averaging only

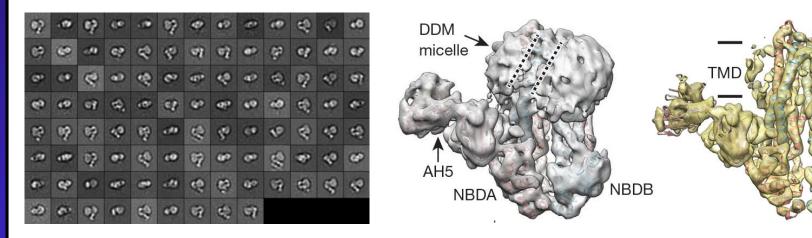
icosahedral averaging and 13-fold non-icosahedral averaging

Zhang et al. (2008) Proc. Natl. Acad. Sci. USA 105: 1867-1872

Protein symmetry

Pseudo-symmetry can be problematic

The problem pseudo-symmetry causes depends on the combination of:

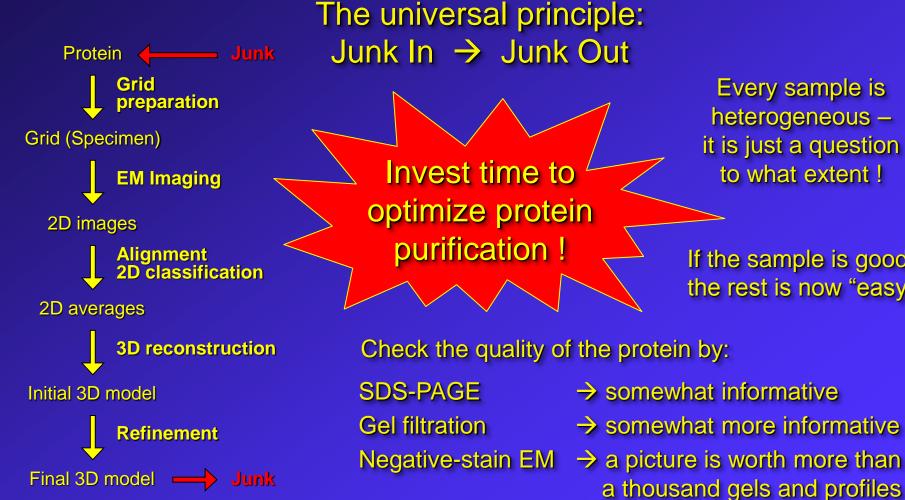

- degree of deviation from true symmetry
- size of molecule
- resolution of map

Determining whether symmetry is "true" or "pseudo" can potentially be sorted out by computational means → AAA+ ATPases

 \rightarrow presentation by Frank DiMaio

Fabs again !

heterodimeric ABC exporter – TmrAB (~135 kDa) at 8.2 Å resolution


Kim et al. (2014) Nature. Epub ahead of print.

Protein shape

For proteins of same MW: – globular protein easier to see – extended protein easier to align

"extra features" highly beneficial for alignment (see Fabs)

The importance of biochemistry !

Every sample is heterogeneous it is just a question to what extent !

If the sample is good, the rest is now "easy"

The advantages (and pitfalls) of negative-stain EM images

SDS-PAGE

information on sample composition

- contaminations
- which subunits of complexes
- degradation of proteins

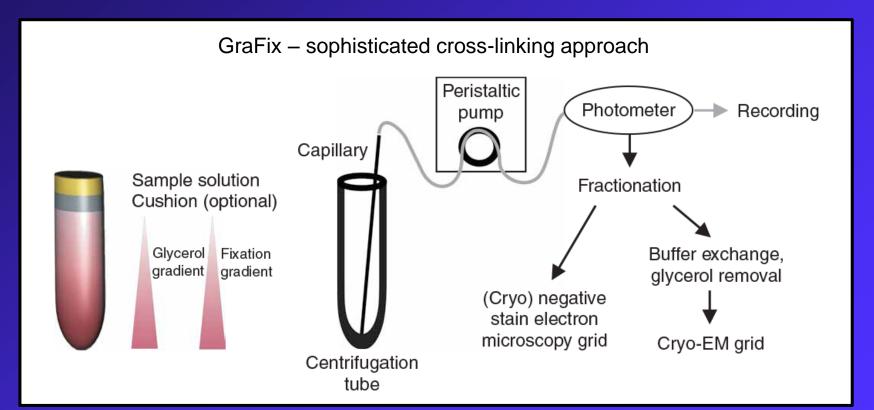
Gel filtration

information on sample homogeneity

- sharp, symmetric peak
 - \rightarrow compositional homogeneity
- − broad peak and/or shoulders
 → aggregation and/or instability

Negative-stain EM

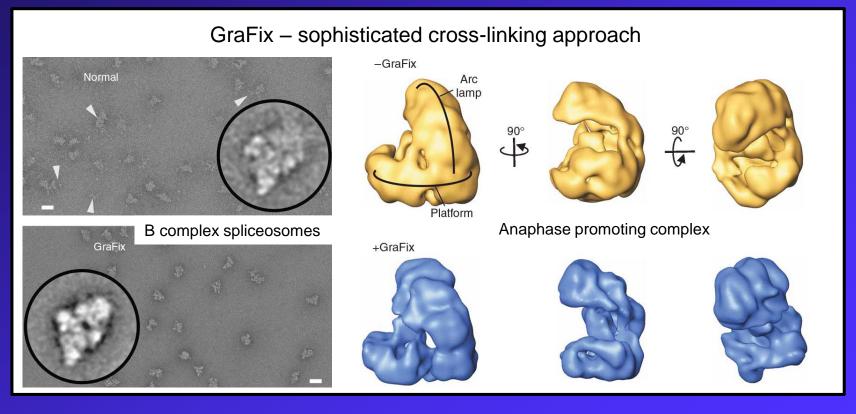
additional information on


- whether contaminations are troublesome
- whether all complexes have all subunits or a mixture of different subcomplexes

Negative-stain EM

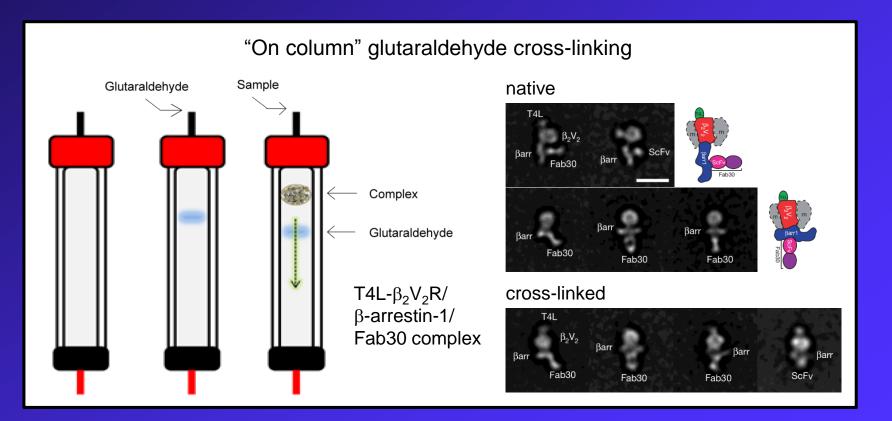
- additional information on
- shape of particles
 - \rightarrow conformational homogeneity
- size of particles
 - → extent of aggregation and/or compositional instability
- adsorption to carbon film can sometimes induce artificial heterogeneity
- different shapes does not necessarily mean heterogeneity (different orientations)
- heterogeneity does not necessarily mean protein does not form 3D crystals (ordering effect of crystal lattice)

Optimize compositional homogeneity – chemical fixation


Cross-linking with low concentrations of glutaraldehyde → optimize cross-linking conditions (assess by SDS-PAGE and negative-stain EM)

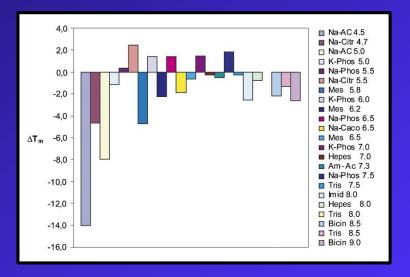
Kastner et al. (2008) Nat. Methods 5: 53-55

Optimize compositional homogeneity – chemical fixation


Cross-linking with low concentrations of glutaraldehyde → optimize cross-linking conditions (assess by SDS-PAGE and negative-stain EM)

Kastner et al. (2008) Nat. Methods 5: 53-55

Optimize compositional homogeneity – chemical fixation


Cross-linking with low concentrations of glutaraldehyde → optimize cross-linking conditions (assess by SDS-PAGE and negative-stain EM)

Shukla et al. (2014) Nature 512: 218-222

Optimize <u>compositional</u> homogeneity – sample buffer

- Buffer optimization based on functional assays is tedious (and not always possible)
- Biophysical properties (e.g., homogeneity, solubility, stability) predictive of successful protein crystallization
 - → Fluorescence-based thermal stability assay as a high-throughput screen for buffer optimization and ligand-induced stabilization of proteins
 - Thermofluor-based high-throughput stability optimization of proteins Ericsson et al. (2006) Anal. Biochem. <u>357</u>: 289-298

Changes in unfolding transition temperature (ΔT_m) for 17 proteins in 23 buffers

→ Studies by Holger Stark for protein complexes

Any news ???

Optimize compositional homogeneity – blotting from a native gel

Knispel et al. (2012) Nat. Methods 9: 182-184

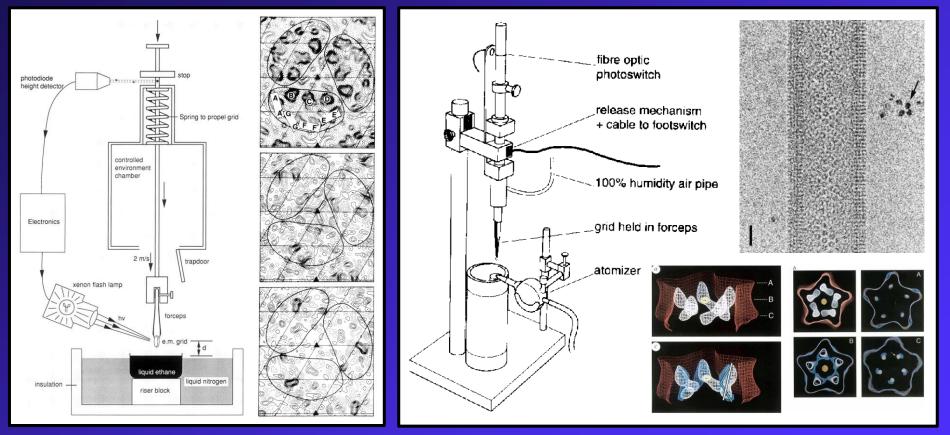
Optimize compositional homogeneity – Affinity Grid

Sharma et al. (2013) J. Struct. Biol. 181: 190-194

Optimize conformational homogeneity

 negative-stain EM may be the best (maybe only) way to "easily" assess conformational heterogeneity

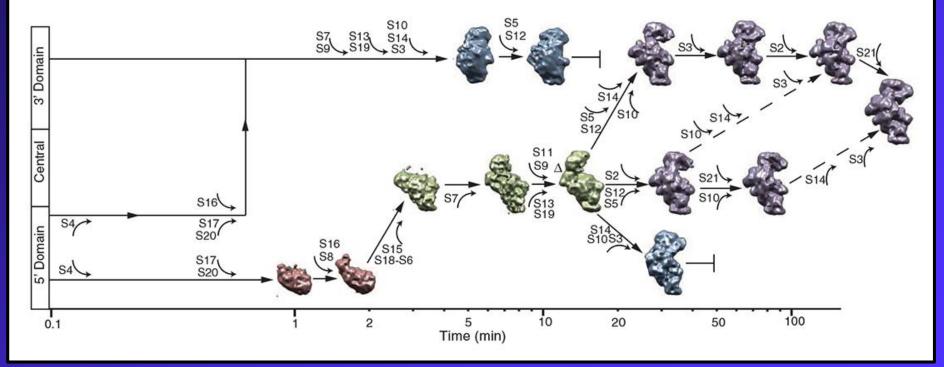
- high contrast \rightarrow possible to identify heterogeneity
- preferred orientations (calculate averages if necessary)
- often difficult to manage
 - add substrates, co-factors, ligands, regulators etc.
 - modify buffer (pH, ions, etc.) or try cross-linking
 - for membrane proteins: try amphipols instead of detergents
- heterogeneity has become much more manageable to deal with due to improved image quality (DDD cameras) and new software tools


and usually prevents building of atomic models

Conformational variability usually limits the resolution of the 3D maps

DIFFERENT CONFORMATIONS ARE ACTUALLY INTERESTING !

Time-resolved EM


Subramaniam *et al.* (1993) *EMBO J.* <u>12</u>: 1-8 Berriman & Unwin (1994) *Ultramicroscopy* <u>56</u>: 241-252 Unwin (1995) *Nature* <u>373</u>: 37-43

Joachim Frank: Rapid mixing apparatus Any news ???

Time-resolved EM

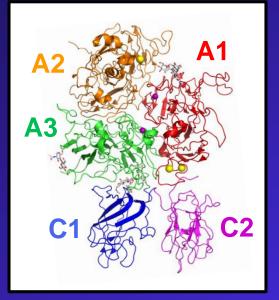
Alternative approach 1: large data sets and computational sorting

Visualizing ribosome biogenesis: parallel assembly pathways for the 30S subunit

Mulder et al. (2010) Science 330: 673-677

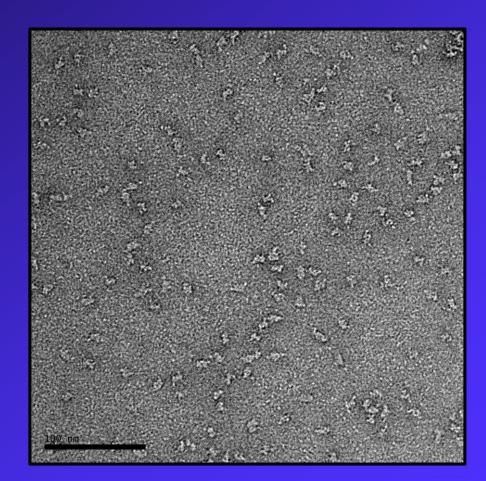
Time-resolved EM

Alternative approach 2: *in situ* TEM using liquid specimen holders

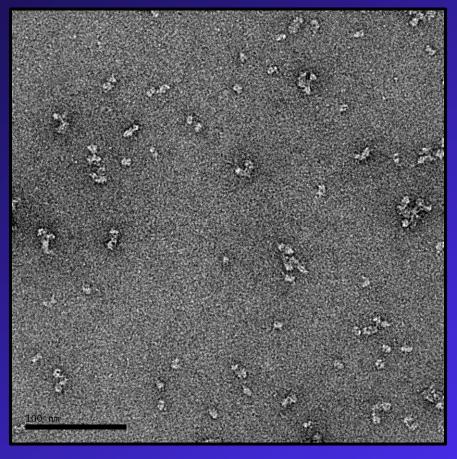


Beyond me but I have limited imagination

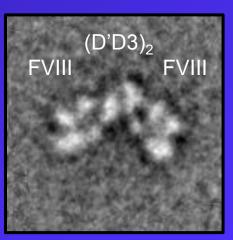
Shall we discuss ?


Specimen preparation, a (painful) example First negative-stain EM analysis

FVIII ~ 160 kDa

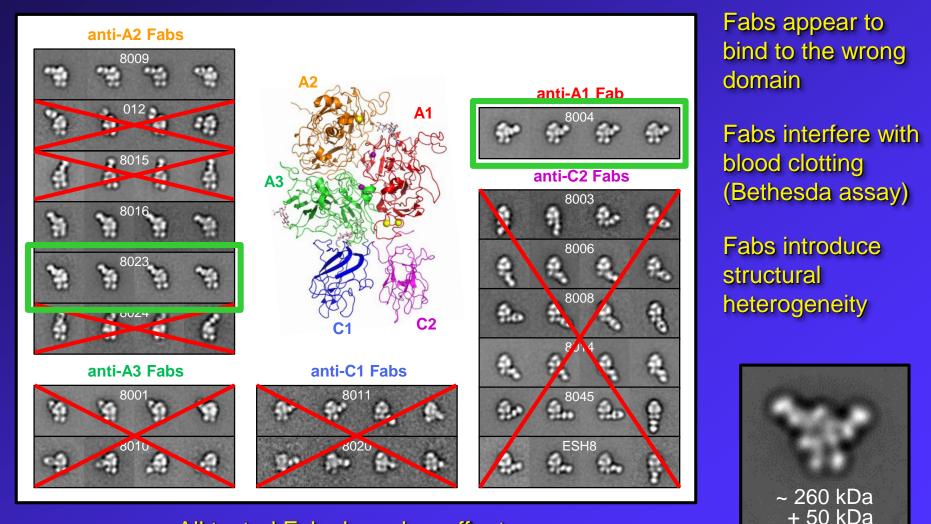

VWF D'D3 fragment ~ 50 kDa, dimeric

> Complex ~ 420 kDa

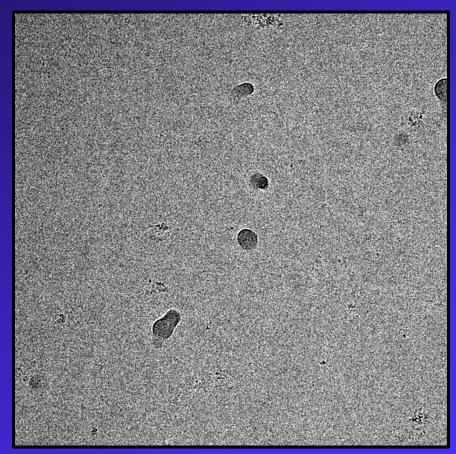

→ dimer did not form→ bad FVIII preparation

Second negative-stain EM analysis

 \rightarrow dimers formed


2:0:1	010	a143	40	40	50	120	53.2	e 17	֥4														
ete	ero	era	1	405	ares	es.	:4:2	23.9	27.9	No	41 0	e\$0	e\$0	efe	e/s	5%	di.	64	64	64	4	<i>e</i> 3	e**
50	50	5.0	et.	6.0	62 A	de.	c'a	4.4	44	-	dife.	210	410	£1.9	41.9	A.D	250	250	:40	s.,	212	210	220
S 22	205	2	a.10	:40	:45	20		ste.	20	540	580	do	3 28	250	250	450	450	aika	440	a 46	44.6	6.5	010
5%a	410	5	\$ P		573	1	-	de	de	4	240	250	alla	210	a13	asa	440	240	240	50	ata	50	510
-	10	4	4/3	63	643	4	150	14	5.43	1	at:	atte	42	44	600	et.	50	5	63	10	5	5.0	24
-	25	1	50	-	450) 10	4	eta	do	120	d'a	215	210	-	2.0	eta	eta	d'a	6ª.0	et a	-	e4.0	1	223
-	ese	sile b	siko III	520	che M	440 1	e%.	e44	214	et.4	14	sta	20	5.0	64	64	e a	60	5.0	5%0	210	50	500 M
ete B	44.9 10	ato E	1973. 19	276	27.5 110	e#5	e#16	414A	414a 10	4000	410	ato	210	atta	an p	atte	ale	440	440		~~~~	NA	-
60	<i>6</i> 40	et a	et.	eta.	et o	ø.	sto.	sto	22.0	eto.	et.e	et.p	e.	e Gen	-	eile F	24.0	atte	***	***	4K9	a.(3)	474.D
-	8° 4	50	sta	20	1	0	20	do.	đo	e a	20	et o	20	eta	200 11	Ø3	d'a	et.	de.	do	20	-246	220 110
220	cito.	et a	ela.	200	et.e	ele	-	-20	220	280	22.30	2430	5.°.7	e!*		che	e'a	6.4	1.0	et a	5%	5%	s**
355	310	250	a%a	59.3	49.0	ato	ala	eto	310	50	37.0	3710	21.0	25.0	45.0	310	57.0		240	240	ale	eser.	alter a
500	500	313	ato	250	ato	ato	21.0	21.0	a7.0	200	405	250	ato	ato	23.0	510	214	2.10	50	50	515	550	250
200	10	5.0	5%	5%	50	5%	210	240	a%6	a10	£43	250	8 ⁶ 0	-	ath	at b	\$12	a%6	530	ese	eso	386	SR.D

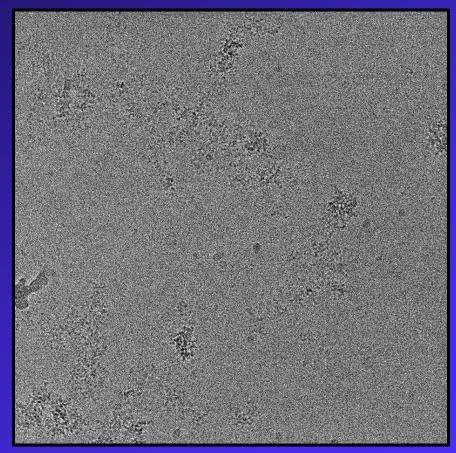
ISAC averages


- \rightarrow dimer too flexible
- → have to work with monomeric D'D3
- → too small for cryo (~ 210 kDa)

Specimen preparation, a (painful) example Fab analysis

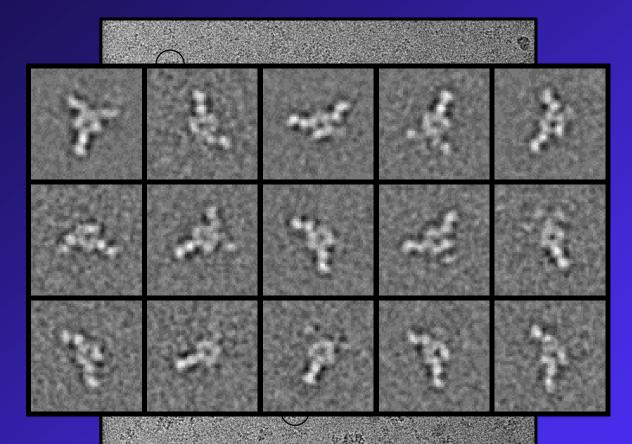
All tested Fabs have low off rates

Specimen preparation, a (painful) example First cryo-EM attempt of FVIII-D'D3-Fabs complex

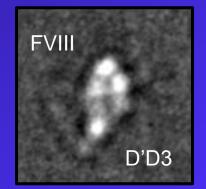


 \rightarrow too dilute

 \rightarrow complex cannot be concentrated


 \rightarrow individual subunits have to be concentrated before complex formation

Specimen preparation, a (painful) example Second cryo-EM attempt of FVIII-D'D3-Fabs complex


→ complexes aggregate
 → optimize buffer
 → too much salt and detergent dissociate complex

Specimen preparation, a (painful) example Third cryo-EM attempt of FVIII-D'D3-Fabs complex

→ complexes somewhat separated
 → requires many images to be collected
 → averages look somewhat promising

BUT:

- → try to sort out heterogeneity computationally
- → try to minimize heterogeneity by cross-linking

Most specimens are still not ready for atomic resolution. I could not agree more.

What are the specific and general problems ? Combination of size, shape, symmetry and heterogeneity of protein.

What can be done about them ?

Optimize biochemistry, prepare optimal grids, collect perfect data, use the best data processing strategy, and then <u>hope</u> for high resolution.

If heterogeneity is limiting the resolution of the 3D maps, it is okay – Learn some interesting biology ! \rightarrow May be even more interesting than high resolution ...

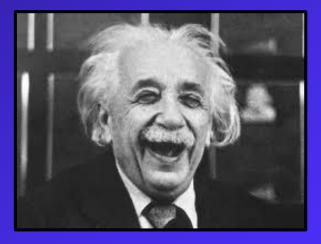
Which approaches have been tried in the past ? How successful have they been ? Which approaches look like the most promising ?

- EM data and image processing have become much better and are still getting better

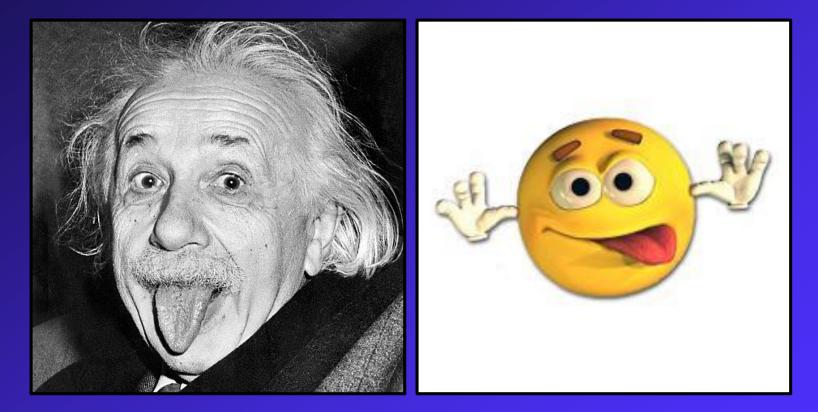
- Automation & computer power allows collection & processing of increasingly larger data sets

 \rightarrow resolution will become increasingly better for increasingly more difficult samples

 \rightarrow sample homogeneity will become increasingly less important (but will always make it easier)


 In terms of biochemistry: screen homologs (especially extremophiles), optimize buffer, cross-linking & Fab labeling

Given that many small and heterogeneous samples may only be suitable for examination in negative stain or at low resolution, how do we make sure that the general scientific community (and ours, too!) understands that not everything is getting to atomic resolution ?


Beyond me but I have limited imagination

"Two things are infinite: the universe and human stupidity; and I'm not sure about the universe." — Albert Einstein

"If you can't explain it to a six year old, you don't understand it yourself." — Albert Einstein

That's it !

