New substrates for electron cryo-microscopy

Lori Passmore

2014 NRAMM Workshop on Advanced Topics in EM Structure Determination
Traditional substrates for cryo-EM

- Quantifoil, C-flat
- Cryomesh

- Electron microscope grid
- Metal grid bar
- Amorphous carbon membrane
- Ice embedded protein particles

Dimensions:
- 80 μm
- 1 μm
Traditional substrates for cryo-EM

- Metal grid bar
- Amorphous carbon membrane
- Ice embedded protein particles
- Electron microscope grid

Dimensions:
- 80 μm
- 1 μm

Traditional substrates for cryo-EM.
Plasma created by ionisation of a gas under low vacuum
E.g. in air (glow discharge), oxygen, argon, hydrogen
Traditional substrates for cryo-EM

- Proteins interact with surfaces present during the blotting process
 - Denaturation of proteins, preferential orientations
- Electron radiation induces motion of the particles and substrates
 - Image blurring
- Additional layer of carbon reduces signal to noise per particle
 - Alignment more difficult
- Overall lack of reproducibility from grid to grid
Graphene substrates for cryo-EM

- gold grid bar
- amorphous carbon membrane
- ice embedded protein particles
- electron microscope grid

- graphene
- 80 μm
- 1 μm
70S Ribosomes on graphene as synthesised

1.2 μm hole
So how do we make graphene more hydrophilic so we can use it for cryoEM?

Amorphous carbon: Sader, Rosenthal et al (2013) JSB
Hydrogen plasma

\[\text{H}^+ + e^- \rightarrow \text{H}_2^+ \]

Graphene 21 eV bond

no graphene
graphene + 10 s hydrogen
graphene + 20 s hydrogen
graphene + 40 s hydrogen
Apoferitin on graphene vs. no graphene.
20 thousand particles
5.2 Å without motion correction, 5.0 Å with
Ribosome speed plots

- Amorphous carbon on quantifoil
 - RMS displacement (Å)
 - Exposure time (ms)
 - Fluence (e\(^{-}/\text{Å}^2\))
 - 0.18 Å/e\(^{-}/\text{Å}^2\)
 - 0.47 Å/e\(^{-}/\text{Å}^2\)

- Unsupported ice on quantifoil
 - RMS displacement (Å)
 - Exposure time (ms)
 - Fluence (e\(^{-}/\text{Å}^2\))
 - 0.14 Å/e\(^{-}/\text{Å}^2\)
 - 0.50 Å/e\(^{-}/\text{Å}^2\)

- Graphene on quantifoil
 - RMS displacement (Å)
 - Exposure time (ms)
 - Fluence (e\(^{-}/\text{Å}^2\))
 - 0.092 Å/e\(^{-}/\text{Å}^2\)
 - 0.41 Å/e\(^{-}/\text{Å}^2\)
• Graphene is an excellent support material for cryo-EM, particularly as an alternative to thin amorphous carbon

• We can modify and control the surface properties of graphene with low-energy plasmas

• Using graphene instead of amorphous carbon reduces noise and radiation induced motion