Furthering our understanding of microtubule dynamic instability by CryoEM

Gabriel Lander

Postdoc, Eva Nogales Lab UC Berkeley/Lawrence Berkeley National Lab

Greg Alushin

The Microtubule

- Microtubules are among most important components of the cytoskeleton
- Fundamental part of many physiological processes:
 - intracellular transport
 - cell motility
 - cell polarization
 - cell division

The Tubulin Dimer - The Microtubule Building Block

Tubulin dimers assemble longitudinally

Protofilament

Microtubule

Microtubule Seam Breaks Helical Symmetry

Microtubules are not static structures - their ability to assemble & depolymerize is essential to cellular function.

The Nucleotide Binding Pocket

Beta Subunit (GTP)

Alpha Subunit (GTP)

GTP is required at beta subunit for MT polymerization, creating strong intertubulin contacts

The Nucleotide Binding Pocket

Beta Subunit (GDP)

Alpha Subunit (GTP)

GTP hydrolysis to GDP weakens the inter-tubulin contacts

Microtubule Dynamic Instability

Microtubule Dynamic Instability

Microtubule Dynamic Instability

Mechanism relating GTP hydrolysis to dynamic instability still unknown

Atomic-Resolution Structures

X-ray Crystallography (IFFX,ISA0,IZ2B, 3DU7,3HKB,3N2G,3RYC, 4F61,4UT5) Polymers bound to stathmin-like domains

X-ray 🌮 Crystallography (4DRX,4F6R) DARPin-bound dimer X-ray Crystallography (4FFB) TOG-bound dimer

CryoEM of Microtubules

Subnanometer-Resolution CryoEM Structures

Li et al. Structure 2002 (9Å resolution)

Kikkawa and Hirokawa EMBO J 2006 (9.5Å resolution)

Sindelar and Downing PNAS 2010 (8.5Å resolution)

Are microtubules only ordered to 8Å resolution?

Fourniol *et al.* JCB 2010 (8Å resolution)

Alushin *et al*. Nature 2010 (8.6Å resolution)

Maurer *et al*. Cell 2012 (8Å resolution)

Yajima *et al*. JCB 2012 (9Å resolution)

FEI Titan EM (aka "The Beast")

- C3 active, parallel illumination
- 300keV
- 2K CCD, no DD = film collection
- No Leginon = Tecnai Low Dose
- Side-entry holder
- "Weird State" feature!

Microtubule Distortions

Distinguishing Alpha from Beta

In an EM micrograph, alpha tubulin is indistinguishable from beta tubulin

Human Kinesin Monomer

Rice et al. Nature, Dec 1999

Mutation in switch II region inhibits ATP hydrolysis, stably binds to microtubules (plasmid from Vale lab, UCSF)

Heterogeneous Protofilament Symmetries & Seam

72000X (0.87Å/pixel) 25e⁻/Å²

lce ring at ~3.6Å

Remove images with drift/ beam induced motion

Pick MT Filaments

2D classification (IMAGIC MSA/MRA)

Layer lines visible out to ~5Å resolution

2D classification (IMAGIC MSA/MRA)

5Å

10Å

20/ 40/ 80/

Remove low resolution particles

2D classification (IMAGIC MSA/MRA)

5Å

10A

20Å 40Å 80Å

Remove particles missing kinesin, also 12pf & 15pf

Refinement Scheme (EMAN2/SPARX Libs)

Masked particle segments with mixed protofilament numbers (13 & 14pfs)

Refinement Scheme (EMAN2/SPARX Libs)

Masked particle segments with mixed protofilament numbers (13 & 14pfs)

13 & 14pf initial models

Refinement Scheme (EMAN2/SPARX Libs)

Masked particle segments with mixed protofilament numbers (13 & 14pfs)

Particles are sorted by multimodel projection matching using 13pf and 14pf models

Asymmetric back projection of each pf symmetry

Low-resolution asymmetric densities

Determine helical symmetry of each pf number using only monomer density (Egelman's hsearch_lorentz)

Applying Pseudo-Symmetry

turn = -27.67° rise = 9.51Å

14 protofilament turn = -25.75° rise = 8.89Å

Applying Pseudo-Symmetry

Average symmetry mates in Fourier space during back projection

For each protofilament density, use the helical parameters to symmetrize the density with pf-I symmetry mates

For each protofilament density, use the helical parameters to symmetrize the density with pf-I symmetry mates

For each protofilament density, use the helical parameters to symmetrize the density with pf-I symmetry mates

For each protofilament density, use the helical parameters to symmetrize the density with pf-I symmetry mates

Applying Pseudo-Symmetry

Extract protofilament containing symmetrized tubulin dimers

Generating Seamed Density

Regenerate 13 or 14-fold microtubule with seam

Pseudo-Helical Microtubule Reconstruction

terate

Particle segments with mixed protofilament #'s

Projection matching & back projection using multiple pf models

For each, find helical parameters (Ed Egelman's hsearch_lorentz)

Over symmetrize using helical parameters (real space)

Extract the "good" protofilaments & create new models using helical params

Final refinement in FREALIGN with same averaging & pf extraction

Assessing alignment with the seam

Removing "bad" microtubules

FREALIGN refinement

FREALIGN refinement

GMPCPP MTs + Kinesin

1.4-3.5um underfocus
25e⁻/Å² (Isec exposure)
311 Films acquired
252 used for processing
92,581 segments
(40:60 ratio 13:14pfs)

Acknowledgements

Greg Alushin (UCB)

Paul Adams & Jeff Head (LBNL)

Eva Nogales (UCB/LBNL)