Phase-contrast Presentation Nov. 13, 2012

HIGH-END INSTRUMENTATION: STATUS REPORT ON IN-FOCUS PHASE CONTRAST

Bob Glaeser

Cryo-EM images of the same area of a streptavidin monolayer crystal Both images taken with the same defocus value, close to Scherzer STRUCTURE FACTORS FOR "CTF-CORRECTED, UNBENT" IMAGES

Spots with IQ 4 or less, shown with numbers, have expected phase errors ~ 22° or less

Outer circle is drawn at 3.0 Å: aperture is compatible with high resolution

~25,000 unit cells in this merged data set of images recorded with the K2 camera

MICROTUBULE DOUBLETS (Puey Onjai and Ken Downing)

Note: much better contrast transfer for the low-resolution sections of layer lines that cross the DSB "gap" (didactic example of the effectivenesss of the SSB aperture) NON-CRYSTALLINE REGION BETWEEN TWO SEPARATE CRYSTALS

- You can spot individual streptavidn tetramers, Mr ~ 55k!
- This capability should increase the coverage of proteome that is possible by a large factorguestimate as much as 100X?
- Results are similar to the best obtained with a thin carbon-film ("Zernicke") phase plate
- Similar problems are also encountered with
 - Unreliable manufacture
 - Short lifetime when there is a good one

In-focus image, tulip aperture

MOTIVATION TO DEVELOP IN-FOCUS PHASE CONTRAST

 In-focus phase contrast of lowresolution features should be ~0.028 D, where D = particle diameter in nm

Glaeser & Hall (2011) Biophys J. 100:2331-7

- Defocus contrast is only a few percent of this, due to the fact that its CTF falls to zero at low spatial frequencies
- The increased SNR at low spatial frequencies should
 - Improve particle alignment and assignment of Euler angles, even for quite small particles
 - Improve assignment of structurally distinct particles into separate conformational or compositional classes

Simulation of potential alignment accuracy: phase-contrast images of a 100 kDa protein Hall et al. (2011) J. Struct. Biol. 174:468-475

2-nm FEATURES MAY BE THE "DETECTABLE LIMIT" IN CRYO-EM TOMOGRAPHY

 $(\rho_{particle} - \rho_{ice})$ values required for S/N > 3 σ , for different voxel sizes and electron exposures

р	0.5 nm	1 nm	2 nm	3 nm	5 nm
$(e nm^{-2})$					
30	31	7.7	1.9	0.86	0.31
100	17	4.3	1.1	0.48	0.17
300	10	2.5	0.62	0.27	0.10
10 ³	5.4	1.4	0.34	0.15	0.06
3x10 ³	3.1	0.79	0.19	0.09	0.03
10 ⁴	1.7	0.43	0.11	0.05	0.02
$3x10^4$	1.0	0.25	0.06	0.03	0.01
105	0.54	0.14	0.04	0.02	0.006

Tomogram of a dimeric, 200 kDa particle suspended In vitreous ice Danev & Glaeser, unpublished

Table from: Glaeser & Hall (2011) Biophys J. 100:2331-2337

- In-focus phase-contrast EM tomography of suitably thin (weak-phase) objects should just barely reach a feature-detection limit of ~2 nm (Fourier resolution of 4 nm)
- Density values must be multiplied by a factor of 14 for amplitude-contrast images Saxberg & Saxton (1981) Ultramicroscopy 6:85-90
 - This would be the case for (incoherent) annular dark-field STEM images
 - It is also likely to be the case for CTEM images of thick specimens, even when a $C_{\rm c}$ corrector is used

Avila-Sakar, A.J. and Chiu, W. (1996) Biophys J. 70:57-68 400 keV, film **Close-to-focus** image phases merged with diffraction

Han, B-G., Sassolini, S. and Glaeser, R.M., **Unpublished** 300 KV, K2 camera In-focus, "tulip" Phase-contrast aperture 3.0 Å map