Fabs facilitate single particle cryoEM of small proteins

Yifan Cheng

Department of Biochemistry & Biophysics University of California San Francisco

> NRAMM Workshop November 11-16, 2012

Overall Strategy

Solution: "Below 100,000 molecular weight, some kind of crystal or other geometrically ordered aggregate is necessary to provide a sufficiently high combined molecular weight to allow for the alignment."

- Richard Henderson, Quarterly Reviews of Biophysics, 28 (1995)171-193

Previously tested methods: formation of monolayer crystal, fuse the target protein into an icosahedral virus, etc.

Our strategy: use one or more monoclonal Fab to form a stable and rigid complex with a target protein.

Benefit for single particle cryoEM of small proteins:

- Enlarge the target proteins for better visualization;
 providing fiducial markers for image alignment;
- providing internal control for 3D reconstruction validation;

Negative stain EM image of Fab - Fabs have a well-defined characteristic shape that is easy to be recognized in negative stain EM.

What are required to make this approach work for a target protein?

A Fab and a target protein must form a stable and rigid complex: - good binders: monoclonal Fabs with high binding affinity;

- conformational epitopes instead of linear epitope;
- characterizable in terms of the functionalities of target proteins;

* Generate Fabs:

- by phage displayed Fab library technology (our preference);
- by hybridoma technology;

* Biochemical characterization of high valued Fabs:

- biochemical assays for rapid biochemical characterization;
- epitope identifications;

* Structural characterization of high valued Fabs:

- by negative stain EM to assess overall homogeneity of the complex;
- by 2D class averages to assess the rigidity of the complex;

* Single particle cryoEM:

- will it help to identify the right particles?
 will it help to confirm the correctness of a 3D reconstruction?
- will it work to help to facilitate refinement to high resolution?

Conclusions

- * We propose a method of using Fab to enable single particle cryoEM of small proteins;
- * Some Fabs are sufficiently rigid to be used as fiducial markers for
- * Phage displayed Fab library is an efficient method to generate conformational epitope Fab;
 * 2D class averages can be used as criteria for Fab selection;
 * We demonstrate one example of IN-Fab complex by single particle

- * Potential application in epitope mapping of pharmacological Fabs;

Acknowledgements

UCSF:
Lab members: Shenping Wu, Agustin Avila-Sakar, David Booth,
Charles Greenberg and Maofu Liao;
Craik Lab: JungMin Kim and Charles Craik (Fab, ABC transporter);
Stroud Lab: Akram Alian, Sarah Griner and Bob Stroud (HIV-1 IN);

Rinat Labs: Pfizer Inc: Andrea Rossi, Javier Chaparro-Riggers and Pavel Strop (PCSK9-J16);

Funding: NIH R01 EUREKA; NIH P50 (UCSF HARC Center); UCSF Program for Breakthrough Biomedical Research;

