Sample Preparation

Holger Stark MPI for biophysical Chemistry Göttingen Germany

Motivation

PDB search results: with min 4 different chains (complexes) make up only $\sim 1\%$ of the PDE

s in contrast to the fact that: proteins act in complexes with an average size of ~10 components (cha

~1% of the PDB entries with >3 chains: Most of these entries are well behaved and stable complexes such as ribosomes, GroEl, proteasome.

There are numerous of large (>150kDa) and asymmetric complexes in the cell and their structure is not known!

Challenging Complexes

- Abundance copy numbers
- Biochemical Purification difficult to optimize
- Stability
- Aggregation
- Structural Heterogeneity
- Conformational Heterogeneity

Structural Heterogeneity may be artificially created by standard EM Sample Preparation Procedures

U4/U6.U5 tri-snRNP

GraFix

A combined Gradient centrifugation and Fixation method

Typically 0 - 0.15% glutaraldehyde

Kastner et al. Nature Methods, 2008

GraFix test: Spliceosomal B Complex

Long adsorption times with GraFix

ow to analyze chemically stabilized complexe

Problem :

Chemically stabilized macromolecules cannot be analyzed by SDS gel analysis

-> GraFix samples can be analyzed by Mass Spec (ECAD, EM Carbon-film-Assisted endoproteinase Digestion)

ECAD

Higher sensitivity !

Preference to detect Peptides located at Interface regions

Reproducible detection of substoichiometric or transiently bound factors

Direct correlation of Mass Spec and Structure Determination

Collaboration with Florian Richter and Henning Urlaub , MPI Göttingen

GraFix

A combined Gradient centrifugation and Fixation method

here is some concern that GraFix may create artefact

- ribosomes and snRNPs did not reveal any difference in structure upon GraFix treatment.
- GraFix treated complexes can still be crystallized (Ferritin) !!
- The 3D structure of Ferritin and Ferritingrafix are identical !!!

GraFix does not "repair" previously damaged complexes, therefore buffer optimization is also required.

- 1) Consumes substantial amounts of sample (\approx 10 mg).
- 2) Is tedious owing to purification capacity and readout.
- 3) For practical reasons limited to a small set of conditions.

The ideal optimization setup

- 1) Consumes little amounts of sample.
- 2) Should be highly sensitive.
- 3) Has high-throughput and samples a comprehensive set of conditions.
- 4) Utilizes simple instrumentation/ chemistry.

The Thermofluor[™] method

- Consumes little amounts of sample (≈1000 pmol/ 96 conditions).
- 2) Should be highly sensitive. <
- Er
 3) Has high-throughput and samples a comprehensive set of conditions (90 conditions in one screen). ✓
- 4) Utilizes simple instrumentation/ chemistry. <

Ericsson et al, Analytical Biochemistry, 20

What actually happens - the simple case

Temperature

Journal of Biomolecular Screening

Universal Screening Methods and Applications of ThermoFluor® Maxwell D. Cummings, Michael A. Farnum and Marina I. Nelen J Biomol Screen 2006 11: 854 DOI: 10.1177/1087057106292746

The relatively complex melting curves characteristic of multidomain proteins (or systems) currently preclude application of ThermoFluor[®] to screening of these systems. A group at Roche has also recently reported the discovery of reasonably

How to interpret data?

Thermofluor Analyzer Interface -Graphs

Thermofluor Analyzer Interface -Input

Thermofluor Analyzer Interface -Results

Tex	File Graph	ermofluor Analysis		orm	at b	ear	bei	t
-Z	Boltzn		Ebei	ne ^{dx}	т	TM		
	1	c7	25468	76,715	331,982	58,982	=	
•	2	Pritte	² Eber	ì⊕ 25	329,878	56,8779		
	3	protein reference	21591,9	65,03	332,029	59,0291		
	4	_{f1} viei		ene	331,993	58,9926		
	5	^{c8} >>	₽iÿnfte	[®] hen	20,99	57,9902		
	6	c10	20617,7	62,175	331,608	58,6077		
	7	a11	20075,2	60,325	332,784	59,7842		
	8	b7	19692,7	59,58	330,526	57,5257		
	9	b8	19525,2	59,1475	330,111	57,111		
	10	h1	19268,6	58,4125	329,872	56,8718		
	11	c4	19266,7	58,105	331,583	58,5834		
	12	c2	19252	58,1775	330,918	57,918		
	13	d9	18824,8	57,0575	329,927	56,9268		
	14	в	18742,9	56,7475	330,286	57,286		
	15	a8	18705,6	56,845	329,063	56,0633	-	
	•		III	!]	Þ		

Proof of principle

Imidazole pH 5.4

Imidazole pH 6.6

Imidazole pH 8.0

Dramatic pH Effect on Stabilization

pH dependent stabilization profile of macromolecular complexes (n=30 complexes)

Most complexes studied so far were probably not treated under the best conditions. Lots of room for improvement !!!

Stabilization of BgHb (snail hemoglobin)

Standard purified sample

Sample rebuffered into Imidazole pH 6

GraFix treated sample

Vanessa Möller, Jürgen Markl

BgHb optimzation!

Day1: buffer optimization
Day2: GraFix run
Day3: Preparation of cryo grids
Day3/4: Imaging over night!
Day5: Particle picking and 2D anal
3D after few weeks

Stabilization of BgHb (snail hemoglobin)

Standard purified Sample: Tris

Result buffer Imidazole pH 6

GraFix treaed sample

Perfect Correlation with Crystallization conditions

Protein complex	ProteoPerfe ct result buffer	Crystallizati on buffer	Citation		
EFG- Ribosome complex	MES, pH 6.5	MES, pH 6.5	Gao et al. Science 2009 326, no5953, 694-699		
P97	HEPES, pH 6.8	HEPES, pH 7.0	Brünger et al JMB 2005 347,437- 452		
75	Tris, pH 8	Tris, pH 7.6- 8.2	Zhang et al. Cell 2011 146(3):384-95		
6S/8S	Hepes, pH 6.8	HEPES, pH 7	Grimm et al. 2012 (Manuscript		
	HEPES, pH 8	HEPES, pH 8	under revision)		
Crm1	HEPES, pH 7.5	HEPES, pH 7.5	Monecke et al. PNAS (2012) under revision		
80S Ribosome	Imidazole, pH	Imidazole, pH	Personal communication		

/hat about Conformational Heterogeneit

Cannot be avoided by biochemical stabilization. Thermal energy is sufficient to generate conformational beterogeneity !

- functional stabilization (not easy, not always possible)
- work with Thermophiles ?
- Cryo Fixation (Cool-GraFix)

Acknowledgements

Ashwin Chari David Haselbach Jan-Martin Kirve Niels Fischer

Wen-Ti Liu Jil Schrader Michael Hohns Andrius Kraskauskas Florian Hauer Prakash Dube Florian Platzmar Boris Busche Mario Lüttich Tobias Koske Frank Würriehausen

