# **Integrative Structural Biology**



Andrej Sali http://salilab.org/

Department of Bioengineering and Therapeutic Sciences Department of Pharmaceutical Chemistry California Institute for Quantitative Biosciences University of California, San Francisco

#### Contents

- 1. Integrative (hybrid) structure determination
- EM images as a source of spatial restraints
   Application to the Nup84 complex
- Multiple fitting of subunits into an EM map of the whole assembly Application to the 26S proteasome

#### Contents

- 1. Integrative (hybrid) structure determination
- EM images as a source of spatial restraints
   Application to the Nup84 complex
- Multiple fitting of subunits into an EM map of the whole assembly Application to the 26S proteasome

#### Structural biology: Maximize accuracy, resolution, completeness, and efficiency of the structural coverage of macromolecular assemblies

Push the envelope: size, dynamics, heterogeneity.

Motivation: Models will allow us to understand how machines work, how they evolved, how they can be controlled, modified, and perhaps even designed.



nuclear pore complex

ribosome

GroEL chaperonin

ATP synthase

4

in a few hundred core

biological processes.

#### **Integrative Structural Biology**

for maximizing accuracy, resolution, completeness, and efficiency of structure determination

Use structural information from any source: measurement, first principles, rules; resolution: low or high resolution

to obtain the set of all models that are consistent with it.



|                                              |                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                 | Vilale)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (-ray                                        | NMR                          | 2D & single particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | electron                                                | immuno-                         | chemical                  | affinity purificatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| rystallography                               | spectroscopy                 | electron microscopy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tomography                                              | electron microscopy             | cross-linking             | mass spectroscop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| subunit structure                            | subunit structure            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                 | subunit structure         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| subunit shape                                | subunit shape                | subunit shape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | subunit shape                                           | 1000                            |                           | and the second se |
| subunit-subunit contact                      | subunit-subunit contact      | subunit-subunit contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | subunit-subunit contact                                 |                                 | subunit-subunit contact   | subunit-subunit contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| subunit proximity                            | subunit proximity            | subunit proximity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | subunit proximity                                       | subunit proximity               | subunit proximity         | subunit proximity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| subunit stoichiometry                        | subunit stoichiometry        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                 |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| assembly symmetry                            | assembly symmetry            | assembly symmetry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | assembly symmetry                                       | assembly symmetry               |                           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| assembly shape                               | assembly shape               | assembly shape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | assembly shape                                          |                                 |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Distance                                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         | MGFLIKRGFGHGARWTG               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FRET                                         | site-directed<br>mutagenesis | yeast two-hybrid<br>system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | gene/protein<br>arrays                                  | protein structure<br>prediction | computational<br>docking  | bioinformatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         | subunit structure               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | In such that has been been been been been been been bee | subunit shape                   | Industry fouriers foundus | Cardwood as house as shown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| automatic automatic and and                  | trainen Keudun Keudun        | and the second data from the second se | SUPPLIES IN A SUPPLIES OF CONTRACT                      |                                 | auburnt-suburnt cornact   | SUDUNT-SUDUNT CONTACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| subunit-subunit contact                      | subunit-subunit contact      | subunit-subunit contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | subunit provimity                                       |                                 |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| subunit-subunit contact<br>subunit proximity | subunit-subunit contact      | subunit-subunit contact<br>subunit proximity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | subunit proximity                                       |                                 |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| subunit-subunit contact<br>subunit proximity | subunit-subunit contact      | subunit-subunit contact<br>subunit proximity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | subunit proximity                                       |                                 |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Sali, Earnest, Glaeser, Baumeister. From words to literature in structural proteomics. Nature 422, 216-225, 2003.

#### An approach to integrative structural biology

Alber *et al. Nature* **450**, 683-694, 2007 Robinson, Sali, Baumeister. *Nature* **450**, 974-982, 2007 Alber, Foerster, Korkin, Topf, Sali. *Annual Reviews in Biochemistry* **77**, 11.1–11.35, 2008 Russel *et al. PLoS Biology* **10**, 2012



While it may be hard to live with generalization, it is inconceivable to live without it. Peter Gay, Schnitzler's Century (2002).

#### **Some IMP applications**





Hsp90 landscape w/ Agard



TRiC/CCC w/ Frydman, Chiu





RyR channel w/ Serysheva, Chiu



Nuclear Pore Complex, w/ Rout, Chait



Nup84 complex, w/ Rout, Chait



Nuclear Pore Complex transport, w/ Rout, Chait, Cowburn, Aitchison, Chook, Liphardt



Microtubule nucleation w/ Agard



Lymphoblastoid cell genome Alber, Chen





PCS9K-Fab complex w/ Cheng, Agard, Pons



Spindle Pole Body w/ Davis, Muller



Chromatin globin domain Marti-Renom

26 Proteasome

w/ Baumeister

#### Integrative Modeling Platform (IMP) http://integrativemodeling.org



D. Russel, K. Lasker, B. Webb, J. Velazquez-Muriel, E. Tijoe, D. Schneidman, F. Alber, B. Peterson, A. Sali, *PLoS Biol*, 2012.

Open source, versions, documentation, wiki, examples, mailing lists, unit testing, bug tracking, ...





Yang Z, Lasker K, Schneidman-Duhovny D, Webb B, Huang C, Pettersen E, Goddard T, Meng E, Sali A, Ferrin T. J Struct Biol, 2011

| UCSF Chimera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 🔲 MD Movie:/imp/modules/benchmark/data/rnap 🗕 🗆 🗙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>File Select Actions Presets Tools Favorites H</u> elp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | File Actions Per-Frame Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| different resolutions<br>for different parts         for different parts         offerent parts | Image: Second |
| 🗾 🚺 🚺                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Table UI Hide Quit Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

#### Contents

- 1. Integrative (hybrid) structure determination
- EM images as a source of spatial restraints
   Application to the Nup84 complex
- Multiple fitting of subunits into an EM map of the whole assembly Application to the 26S proteasome

# **3D-EM process**

#### Specimen



Digitized micrograph



Particle selection, alignment, classification, averaging





# Scoring: Comparison of EM image and model

Velazquez et al. PNAS, 2012



Correlation between an image and closest model projection:

 $em2D = 1 - max_{\alpha} corr(\mathbf{P}(\mathbf{m}, \alpha), \mathbf{d})$ 

- An EM image (*eg*, class average) d is compared with the most overlapping projection P(m,α) of a downsampled model m.
- This optimal projection is found by optimization over three orientation angles and two translation distances,  $\alpha$ .
- Can be easily extended to tilt series of images to improve data-to-parameter ratio.
- It may be possible to address conformational and configurational homogeneity.

# Scoring: Comparison of EM image and model



![](_page_13_Figure_0.jpeg)

Friday, November 16, 12

# **Configurational sampling protocol**

Velazquez et al. PNAS, 2012

![](_page_14_Picture_2.jpeg)

![](_page_14_Figure_3.jpeg)

![](_page_14_Picture_4.jpeg)

#### **Transferrin-Transferrin Receptor complex**

Velazquez et al. PNAS, 2012

![](_page_15_Figure_2.jpeg)

# **Application to an antigen - antibody complex**

Schneidman-Duhovny D, Rossi A, Avila-Sakar A, Kim SJ, Velazquez-Muriel J, Strop P, Liang H, Krukenberg KA, Liao M, Kim HM, Sobhanifar S, Dotsch V, Raipal A, Pons J, Agard DA, Cheng Y, Sali A. A Method for Integrative Structure Determination of Protein-Protein Complexes. Bioinformatics, 2012.

![](_page_16_Picture_2.jpeg)

#### Contents

- 1. Integrative (hybrid) structure determination
- EM images as a source of spatial restraints
   Application to the Nup84 complex
- Multiple fitting of subunits into an EM map of the whole assembly Application to the 26S proteasome

![](_page_18_Figure_0.jpeg)

- Present in 16 copies in the NPC
- Proteins share a common ancestor with vesicle coating complexes

#### Nup84 complex: Representation

Fernandez, Phillips, ... Stokes, Chait, Rout. JCB, 2012

![](_page_19_Figure_2.jpeg)

#### Nup84 complex: Data

![](_page_20_Figure_1.jpeg)

#### Nup84 complex: Ensemble of good scoring solutions

Fernandez, Phillips, ... Stokes, Chait, Rout. JCB, 2012

![](_page_21_Figure_2.jpeg)

- 10,000 good scoring structures
- All restraints are satisfied (2D-EM, domain deletion, ...)
- Domain-domain orientations are resolved uniquely.
- Full ensemble precision is ~1 nm

#### Assessment: Agreement with heterodimeric crystallographic structures

![](_page_22_Picture_1.jpeg)

#### Contents

- 1. Integrative (hybrid) structure determination
- EM images as a source of spatial restraints
   Application to the Nup84 complex
- Multiple fitting of subunits into an EM map of the whole assembly Application to the 26S proteasome

#### Sampling

![](_page_24_Picture_1.jpeg)

#### **Divide-and-conquer sampling**

![](_page_24_Figure_3.jpeg)

M.I. Jordan, Graphical models. *Stat. Sci.* **19**, 140–155, 2004. **K. Lasker**, M. Topf, A. Sali, **H. Wolfson**, J. Mol. Biol. 388, 180-194, 2009.

Friday, November 16, 12

#### **Divide-and-conquer sampling in IMP**

K. Lasker, D. Russel, B. Webb

![](_page_25_Figure_2.jpeg)

![](_page_25_Figure_3.jpeg)

- 1. discretize the sampling space,
- 2. break the system into overlapping subsets,
- 3. find acceptable local solutions,
- 4. then merge them together self-consistenly into increasingly larger subsets.

#### Assembly architecture from atomic structures of subunits, EM density map of assembly, and proteomics

![](_page_26_Figure_1.jpeg)

# Aligning proteomics networks to EM density maps

![](_page_27_Picture_1.jpeg)

Lasker et al. *J. Mol. Biol.* 388, 180-194, 2009 Lasker et al. *in preparation* 

![](_page_27_Figure_3.jpeg)

Friday, November 16, 12

atomic structure are found by path search

#### Contents

- 1. Integrative (hybrid) structure determination
- EM images as a source of spatial restraints
   Application to the Nup84 complex
- Multiple fitting of subunits into an EM map of the whole assembly
   Application to the 26S proteasome

# Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach

Keren Lasker, Friedrich Förster, Stefan Bohn, Thomas Walzthoeni, Elizabeth Villa, Pia Unverdorben, Florian Beck, Ruedi Aebersold, Andrej Sali, and Wolfgang Baumeister. *Proc. Natl. Acad. Sci. USA*, 2012.

![](_page_29_Figure_2.jpeg)

#### **The 26S proteasome architecture**

![](_page_30_Picture_1.jpeg)

![](_page_30_Figure_2.jpeg)

Bohn S. and Förster F. Handbook of Proteolytic Enzymes, 2012

![](_page_31_Figure_0.jpeg)

# Gathering information and translation into spatial restraints

![](_page_31_Figure_2.jpeg)

#### **RP components and their representation**

![](_page_32_Figure_1.jpeg)

### Cryo-EM map of the S. pombe 26S proteasome

![](_page_33_Figure_1.jpeg)

![](_page_33_Figure_2.jpeg)

![](_page_33_Figure_3.jpeg)

Particles Symmetry Increment FSC @ 0.5 FSC @ 0.3

![](_page_33_Figure_5.jpeg)

**Restraints: Cross-correlation between a model and the map** 

F. Foerster, S. Bohn, W. Baumeister

### Cryo-EM of knockout mutants localizes Rpn10 and Rpn13

![](_page_34_Picture_1.jpeg)

![](_page_34_Picture_2.jpeg)

Restraints: Positions of Rpn10 and Rpn13 are fixed while sampling other subunits.

Sakata S, Bohn S, Mihalache O, Kiss P, Beck F, Nagy I, Nickell S, Tanaka K, Saeki Y, Förster F, Baumeister W, PNAS, 2012.

#### Fitting of *D. melanogaster* Rpn6 X-ray structure into the cryo-EM map localizes Rpn6

**Structure - map cross-correlation** 

![](_page_35_Figure_2.jpeg)

Pathare GR, Nagy I, Bohn S, Unverdorben P, Hubert A, Körner R, Nickell S, Lasker K, Sali A, Tamura T, Nishioka T, Förster F, Baumeister W & Bracher A., **PNAS**, 2012.

![](_page_35_Picture_4.jpeg)

![](_page_35_Picture_5.jpeg)

![](_page_35_Picture_6.jpeg)

**Restraints: Position of Rpn6 is fixed while sampling other subunits.** 

lid

Similarly, for the AAA-ATPase Rtp1-6 heteromeric ring (Bohn et al, PNAS, 2010).

microscop

## **Cross-linking / mass spectrometry data**

-formelige total

![](_page_36_Picture_2.jpeg)

Chemica

Leitner, Walzthoeni, Kahraman, Herzog, Rinner, Beck, Aebersold. *MCP*, 2010

![](_page_36_Figure_4.jpeg)

Inter-molecular cross-linking of exposed Lys residues:

- 12 Rpt-Rpn residue-specific crosslinks (S.p.)
- 3 Rpn-Rpn residue-specific crosslinks (S.p.)

Restraints: upper distance bounds on cross-linked atoms or beads.

![](_page_36_Figure_9.jpeg)

# Public proteomics data

![](_page_37_Figure_1.jpeg)

Förster F, Lasker K, Nickell S, Sali A, and Baumeister W, *Mol. Cell. Proteomics,* 2010 Stengel F, Robinson, C.

![](_page_38_Figure_0.jpeg)

# Sampling good-scoring 19S structures

![](_page_38_Figure_2.jpeg)

discretization of the map into 238 anchor points localization of coarse subunit models, subject to proteomics data

enumeration of all configurations with at most 5 violations local rigid body fitting of alternative atomic subunit models

selection of best subunit models by fitting quality atomic model refinement subject to cross-linking and position restraints

Elizabeth Villa

# Ensemble of ~0.5 million best-scoring models

![](_page_39_Figure_1.jpeg)

8-1-

24

![](_page_39_Figure_2.jpeg)

![](_page_39_Figure_3.jpeg)

![](_page_39_Figure_4.jpeg)

Correlation across all models

| d         |      |      |      |      |      |      |      |       |       |       |
|-----------|------|------|------|------|------|------|------|-------|-------|-------|
| Rpn1      | Rpn2 | Rpn3 | Rpn5 | Rpn6 | Rpn7 | Rpn8 | Rpn9 | Rpn10 | Rpn11 | Rpn12 |
| Cluster 1 | -    |      |      |      |      |      |      |       |       |       |
|           |      |      |      |      |      |      |      |       |       |       |
| Cluster 2 |      |      |      |      |      |      |      |       |       |       |
|           |      |      |      |      |      |      |      |       |       |       |
| Cluster 3 |      |      |      |      |      |      |      |       |       |       |
|           |      |      |      |      |      |      |      |       |       |       |

Assessing the well-scoring models (in the absence of Bayesian inference)

- 1. Existence of a good-scoring model.
- 2. Precision of the ensemble of good-scoring models.
- 3. Check model against unused data (cross-validation).
- 4. Known precision / accuracy for "similar" cases.
- 5. Non-random patterns in the model.

Modeling facilitates assessing the data as well as models in terms of precision and accuracy.

#### **Comparison with an independently determined model**

Left: Lasker, Förster, Bohn, Walzthoeni, Villa, Unverdorben, Beck, Aebersold, Sali, Baumeister. *PNAS*, 2012. Right: Lander, Estrin, Matyskiela, Bashore, Nogales, Martin. *Nature*, 2012.

![](_page_41_Figure_2.jpeg)

# Need for multi-scale (hierarchical) sampling

![](_page_42_Figure_1.jpeg)

# Example

![](_page_43_Figure_1.jpeg)

Friday, November 16, 12

### **Bayesian inference of structures**

![](_page_44_Figure_1.jpeg)

#### Structures from NMR data and a molecular mechanics force field

W. Rieping, M. Habeck, M. Nilges. Inferential Structure Determination. Science 309, 2005.

Least-squares scoring function:

$$S(D-D(X)) = E_{MM} + w \cdot E_{NMR}$$

![](_page_44_Picture_6.jpeg)

Bayesian scoring function:

 $p(X,\sigma \mid D, E_{_{MM}}) \propto p(D \mid X,\sigma) \cdot p(X \mid E_{_{MM}}) \cdot p(\sigma)$ 

![](_page_44_Picture_9.jpeg)

# Single structure from inconsistent cross-links

C3 and C3b forms of human Complement factor 3

self-consistent data:

![](_page_45_Figure_3.jpeg)

Friday, November 16, 12

#### **Disseminating structural models**

Publishing models in a **printed paper** 

Depositing models in a **computer database** 

Depositing input data in a computer database

Depositing modeling protocols for converting data to models

**Enable** others to interact with data and models: test, improve, use data and models

Russel D, Lasker K, Webb B, Velazquez-Muriel A, Tijoe E, Schneidman D, Alber F, Peterson B, Sali A, *PLoS Biol* **10**, 2012. Morin A, Urban J, Adams PD, Foster I, Sali A, Baker D, Sliz P. Shining Light into Black Boxes. *Science* **336**, 159-160, 2012.

Friday, November 16, 12

![](_page_46_Picture_8.jpeg)

47

![](_page_46_Picture_9.jpeg)

![](_page_46_Picture_10.jpeg)

![](_page_46_Picture_11.jpeg)

![](_page_46_Picture_12.jpeg)

![](_page_46_Picture_13.jpeg)

![](_page_46_Picture_14.jpeg)

# Acknowledgments

**QB3** @ UCSF:

Javier Velazquez (2D EM) Keren Lasker (26S, MultiFit) Jeremy Phillips (Nup84) Charles Greenberg (EM) Daniel Russel (IMP) Ben Webb (IMP) Elina Tjioe (IMP) Riccardo Pellarin (Bayesian,XL) Massimiliano Bonomi (Bayesian,SPB) GQ Dong (Bayesian) Seung Joong Kim (NPC) Dina Schneidman (SAXS) Peter Cimermancic (HPC) Natalia Khuri (BD) Barak Raveh (NPC transport)

Former members:

Frank Alber (USC) Friederich Förster (MPI) Damien Devos (EMBL) Maya Topf (Birkbeck College) Narayanan Eswar (Du Pont) Marc Marti-Renom (CNAG) Mike Kim (Google) Dmitry Korkin (UM, Columbia) Fred Davis (HHMI) M. Madhusudhan (Singapore) D. Eramian (UCSF) Min-Yi Shen (Applied Biosys) Bret Peterson (Google)

Mike Rout (Rockefeller U) Javier Fernandez Brian Chait (Rockefeller U) David Stokes (NYSBC) Steven Burley (Lilly) David Cowburn (AECOM) Bo Huang (UCSF) Haim Wolfson (TAU) Wolfgang Baumeister (MPI) **Friedrich Foerster** Elizabeth Villa Stefan Bohn Stefan Nickell Ruedi Aebersold (ETH) Michael Nilges (Pasteur) Yannick Spill Juri Rappsilber (U Edinborough) Tom Ferrin (UCSF) Tom Goddard Trisha Davis (Univ of Wash) David Agard (UCSF) Wah Chiu (Baylor) Joachim Frank (Columbia) Nevan Krogan (UCSF) Al Burlingame (UCSF) **Robert Stroud (UC** 

Funding

NIH NSF Keystone International Conference on

Structural Analysis of Supramolecular Assemblies by Hybrid Methods

> March 3-7, 2013 Granlíbakken Conference Center Lodge Lake Tahoe, CA, USA

**SESSION TOPICS** 

SESSION 1: Computation for Hybrid Approaches
SESSION 2: Hybrid Approaches to Studying Dynamic Systems
SESSION 3: Hybrid Approaches to Studying Macromolecular Structures
SESSION 4: Hybrid Approaches to Studying Cellular Organization
SESSION 5: Single Molecule Methods
SESSION 6: Latest Advances in Hybrid Methods

ORGANIZERS Chair: Andrej Sali, USA Co-Chairs: David Baker, USA Brian Chait, USA

Dynein cargo transport, Graham Johnson, www.grahamj.com; Adenovirus vertex, Stewart Laboratory, Case Western Reserve University