Introduction to Membrane Proteins

History

- •Membranes and membrane proteins
- •Structure determination of membrane proteins
- 2D crystallization
- Methods for high-throughput screening
- •Types of 2D crystals
- Software for 2D crystallography

NRAMM Workshop – Nov 12, 2009 David Stokes

Revival of electron crystallography Richard K Hite, Stefan Raunser and Thomas Walz

Since the structure determination of bacteriorhodopsin in 1990, much progress has been made in the further development and use of electron crystallography. In this review, we provide a concise overview of the new developments in electron crystallography concerning 2D crystallization, data collection and data processing. Based on electron crystallographic work on bacteriorhodopsin, the acetylcholine receptor and aquaporins, we highlight the unique advantages and future perspectives of electron crystallography for the structural study of membrane proteins. These advantages include the visualization of membrane proteins in their native environment without detergent-induced artifacts, the trapping of different states in a reaction pathway by time-resolved experiments, the study of non-specific protein–lipid interactions and the receptor [8,9], sheep aquaporin-0 [10,11^{••}], rat aquaporin-4 (solved using recombinant protein expressed in insect cells) [12^{••}] and rat microsomal glutathione transferase 1 [13[•]].

A game of numbers The number of solved structures

Seven structures may appear a modest accomplishment compared to the many more membrane protein structures that have been determined by X-ray crystallography over the past few years. Considering, however, that less than two dozen groups are currently pursuing electron crystallography, compared to the hundreds of X-ray groups, the seven membrane protein structures determined by elec-

Current Opinion in Structural Biology, 2007 17:389

Integral Membrane Protein	Resol.	Year	Reference
	(Å)		
Eye lens Aquaporin 0	1.9	2005	(Gonen, Cheng et al.)
Aquaporin-4	2.8	2009	(Tani, Mitsuma et al.)
Bacteriorhodopsin	3.0	1997	(Kimura, Vassylyev et al.)
Glutathione transferase	3.2	2006	(Holm, Bhakat et al.)
Plant LHC-II	3.4	1991	(Kühlbrandt and Wang)
Bacteriorhodopsin	3.5	1990	(Henderson, Baldwin et al.)
Aquaporin-1	3.8	2000	(Murata, Mitsuoka et al.)
Acetylcholine receptor	4.0	2005	(Unwin)
Human aquaporin 2	4.5	2005	(Schenk, Werten et al.)
Plant Aquaporin SoPIP2	5.0	2005	(Kukulski, Schenk et al.)
Halorhodopsin	5.0	2000	(Kunji, von Gronau et al.)
Bovine Rhodopsin	5.5	2003	(Krebs, Edwards et al.)
Porin PhoE	6.0	1991	(Jap, Walian et al.)
Glutathione transferase	6.0	2002	(Holm, Morgenstern et al.)
Bacteriorhodopsin	6.5	1983	(Leifer and Henderson)
Oxalate transporter OxIT	6.5	2002	(Hirai, Heymann et al.)
Frog Rhodopsin frog	6.5	1997	(Unger, Hargrave et al.)
Ca ²⁺ -ATPase	6.5	2002	(Xu, Rice et al.)
Glycerol channel GlpF	6.9	2000	(Stahlberg, Braun et al.
Bacteriorhodopsin	7.0	1975	(Henderson and Unwin)
Gap junction channel	7.0	2007	(Oshima, Tani et al.)
NhaA Na/ H [⁺] antiporter	7.0	2000	(Williams)
EmrE multidrug transporter	7.0	2003	(Ubarretxena-Belandia et al.)
hCTR1 Cu transporter	7.0	2009	(De Feo, Aller et al.)
Gap junction channel	7.5	1999	(Unger, Kumar et al.)
Sec YEG complex	8.0	2005	(Bostina, Mohsin et al.)
Plant photosystem II RC	8.0	1998	(Rhee, Morris et al.)
Neurospora H ⁺ -ATPase	8.0	1998	(Auer, Scarborough et al.)
Acetylcholine receptor	9.0	1993	(Unwin)

Table 1. 3D structures of membrane proteins determined by electroncrystallography.Atomic-resolution structures are highlighted in bold.

Integral Membrane Protein	Resol.	Year	Reference
	(A)		
Bacteriorhodopsin	7.0	1975	(Henderson and Unwin)
Bacteriorhodopsin	6.5	1983	(Leifer and Henderson)
Bacteriorhodopsin	3.5	1990	(Henderson, Baldwin et al.)
Plant LHC-II	3.4	1991	(Kühlbrandt and Wang)
Porin PhoE	6.0	1991	(Jap, Walian et al.)
Acetylcholine receptor	9.0	1993	(Unwin)
Frog Rhodopsin frog	6.5	1997	(Unger, Hargrave et al.)
Bacteriorhodopsin	3.0	1997	(Kimura, Vassylyev et al.)
Plant photosystem II RC	8.0	1998	(Rhee, Morris et al.)
Neurospora H⁺-ATPase	8.0	1998	(Auer, Scarborough et al.)
Gap junction channel	7.5	1999	(Unger, Kumar et al.)
NhaA Na/ H [⁺] antiporter	7.0	2000	(Williams)
Glycerol channel GlpF	6.9	2000	(Stahlberg, Braun et al.
Halorhodopsin	5.0	2000	(Kunji, von Gronau et al.)
Aquaporin-1	3.8	2000	(Murata, Mitsuoka et al.)
Glutathione transferase	6.0	2002	(Holm, Morgenstern et al.)
Oxalate transporter OxIT	6.5	2002	(Hirai, Heymann et al.)
Ca ²⁺ -ATPase	6.5	2002	(Xu, Rice et al.)
Bovine Rhodopsin	5.5	2003	(Krebs, Edwards et al.)
EmrE multidrug transporter	7.0	2003	(Ubarretxena-Belandia et al.)
Eye lens Aquaporin 0	1.9	2005	(Gonen, Cheng et al.)
Acetylcholine receptor	4.0	2005	(Unwin)
Human aquaporin 2	4.5	2005	(Schenk, Werten et al.)
Plant Aquaporin SoPIP2	5.0	2005	(Kukulski, Schenk et al.)
Sec YEG complex	8.0	2005	(Bostina, Mohsin et al.)
Glutathione transferase	3.2	2006	(Holm, Bhakat et al.)
Gap junction channel	7.0	2007	(Oshima, Tani et al.)
Aquaporin-4	2.8	2009	(Tani, Mitsuma et al.)
hCTR1 Cu transporter	7.0	2009	(De Feo, Aller et al.)

 Table 1. 3D structures of membrane proteins determined by electron

 crystallography.
 Atomic-resolution structures are highlighted in bold.

Singer & Nicholson fluid-mosaic model of the membrane

cytoplasm or interstitial fluid

42 nm diameter 80 different IMPs 16 MDa total mass 65% protein by mass 600 TM-helices (18% outer/25% inner surface area)

Synaptobrevin is most abundant

Why are membrane proteins important?

Membrane proteins:

mediate signaling, transport, adhesion at cell surface 40% of transcripts from all phyla 60% of all therapeutic drugs on the market

PDB:

60,000 total structures deposited 553 structures from 204 different membrane proteins (25% β -barrel proteins from bacterial outer membrane)

Structure Determination of Membrane Proteins

Expression in cellular membrane

X-ray crystallography

Electron crystallography

Single particle reconstructions

GIRK channel - Ubarretxena

ribosome - Sec61 – TRAP complex, Menetret, Akey 2008

Spherical Reconstruction

Sigworth & colleagues, J Struct Biol. 133:119, 2001, Nature 2009

Types of membrane protein crystals (Iwata a la Michel 1985)

Figure 18.1. Types of membrane protein crystals

Fv antibody mediated crystallization (Hunte and Michel)

Current Opinion in Structural Biology

Crystallisation of COX from *P. denitrificans* in complex with an antibody Fv fragment. Crystal contacts are solely brought about by interactions involving the Fv fragment. The co-complex was crystallised and the structure determined at 2.8 Å resolution.

'Type II' discontinuous arrangement of micellar Octyl-POE around the hydrophobic perimeter of the detergent C8E4 and OmpF porin (*E. coli*) R3 crystal

'Type I' continuous arrangement of stacked layers consisting of extended two-dimensional sheets of purple membrane bR trimers are separated in plane by a belt of native lipids.

Hollow spherical shell assemblies of LHC-II were produced and packed into well-ordered three-dimensional crystals. The icosahedral spheres have a diameter of 250 Å and contain 20 protein trimers and several disordered lipid molecules.

Continuous network of β -Octylglucoside extending throughout the entire P3121 crystal of phospholipase A OmplA

X-ray crystallography

Electron crystallography

о Ц ог ма*

0

ö

[~]0-(СН₂-СН₂-О)₈-Н

HO

Triton X-100 Octylphenolpoly(ethyleneglycolether)_n

C12E8 Dodecylpoly(ethyleneglycolether)_a

n_Octylglucoside

1-O-n-Octyl-β-D-glucopyranoside

Octylthioglucoside

n-Octyl-1-thio-β-D-glucopyranoside

HECAMEG

6-O-(N-heptyl-carbamoyl)-methyl-a-D-glucopyranoside

Cholic acid, sodium salt

Sodium cholate

CHAPS

3-{(3-Cholamidopropyl)dimethylammonio]-1-propane-sulfonate

CHAPSO

3-{(3-Cholamidopropyl)dimethylammonio}-2-hydroxy-1-propane

-sulfonate

OH O' O'

TABLE 1 PHYSICAL PROPERTIES OF COMMONLY USED DETERGENTS

Detergent	Monomer, Da mw	Micelle, Da mw	CMC % (w/v)	CMC Molarity
Anionic				
SDS	288	18,000	0.23	8.0 x 10 ⁻³
Cholate	430	4,300	0.60	1.4 x 10 ⁻²
Deoxycholate	432	4,200	0.21	5.0 x 10 ⁻³
Cationic				
C ₁₆ TAB	365	62,000	0.04	1 x 10 ⁻³
Amphoteric				
LysoPC	495	92,000	0.0004	7 x 10 ⁻⁶
CHAPS	615	6,150	0.49	1.4 x 10 ⁻³
Zwittergent 3-14	364	30,000	0.011	3.0 x 10 ⁻⁴
Nonionic				
Octylglucoside	292	8,000	0.73	2.3 x 10 ⁻²
Digitonin	1,229	70,000		
$C_{12}E_{8}$	542	65,000	0.005	8.7 x 10 ⁻⁵
Lubrol	582	64,000	0.006	1.0 x 10 ⁻⁴
Triton X-100	650	90,000	0.021	3.0 x 10 ⁻⁴
Nonidet P-40	650	90,000	0.017	3.0 x 10 ⁻⁴
Tween 80	1,310	76,000	0.002	$1.2 \ge 10^{15}$

critical micelle concentration

lipid solubilization by C₁₂E₈ (Levy, Rigaud et al. 1990)

Stage I is characterized by a detergent concentration that is low enough not to disrupt the lipid bilayer.

Stage II is the region of detergent concentration where lipid bilayer and mixed micellar structures coexist.

Stage III covers the high detergent concentration where only small micellar structures occur. These specific regions are delineated by the "saturation

successful for FhuA & FoF1 ATPase

Use of Fluorinated lipids for 2D surface crystallization (Lebeau et al. 2001)

successful for H-ATPase

Crystallization by dialysis

dialysis of detergent monomers

2D crystallization conditions: Protein concentration: 0.4-1 mg/ml Lipid type: DMPC, DOPC, POPC, DOPG, E. coli lipids Lipid-to-protein-ratio (LPR, mg-mg): 0.2-1.5 Detergent type and concentration: DDM or OG No precipitants used Buffer: pH 6-8, monovalent/divalent cations, catalytically/conformationally active compounds

Multichannel (30) dialysis device (H. Stahlberg)

dialysis membrane

sample well

buffer inlet

thermocouple

buffer outlet

110

96-well dialysis block

Time course for removal of low and high CMC detergents

octylglucoside (cmc=7.3mg/ml)

Microfluidic dialysis block (GN Biosystems)

microfluidic dialysis tray (4-10 $\mu l)$

Programmable temperature (cycling)

cyclodextrin dispensing robot

(Engel & colleagues)

2-10 ul well volumes

- (1) pipettor for cyclodextrin addition,
- (3) laser system for light scattering.
- (2) capacitive sensor for liquid level.(4) second pipettor for maintaining the liquid level.
- (5) Stepper motors control the X-Y.
- (7) A cooling/heating element. (8) Solutions are stored in bottles under pressure.

(6) shaker

Negatively staining of 96 specimens for evaluation by EM

Cheng . . . Potter, 2007, JSB

macromolecule

Magnetic 96-format platform Nickel EM grids Final blot with filter paper 8 at-a-time

John loads the grid into the holder

LEGINON SOFTWARE CONTROLS ROBOT AND 2DX IMAGING

LEGINON is a system designed for automated collection of images by TEM (NRAMM at Scripps)

Define montage image area (e.g. 3x3)

Take a images at low mag

Pick target squares using square finder (histogram criteria)

Take images of selected squares

Pick targets from square images (histogram criteria)

DENSITY HISTOGRAM EVALUATED TO SELECT SUITABLE AREAS FOR IMA

SHAPE RECOGNITION ALGORITHMS (NEURAL NET) REPRESENTS A (NEAF

autoloader on FEI T12 (Engel)

Α <u>8</u> 0.15 D.1 0.05 500 1000 1500 Niveaux de gris 0.08 . 0.06 . . 0.04 e 0.02 1000 1500 Niveaux de gris

2dx_hunter (Engel)

2 x R_m

С

Gatling Gun (Lefman & Subramaniam, 2007, JSB)

CLASSIFICATION OF IMAGED OBJECTS

Class
A: Crystal with Lattice Pattern
B: Tubular Vesicle, Vesicle Sheet and Physical Growth
C: Vesicle, Vesicle Cluster, TV with irregular tubular vesicle
D: Protein aggregate and lipid aggregate
E: String of Lipid and Multi Lamella Lipid
F: Aggregate or Precipitate in solution

Class E

Tubular Vesicle

Physical growth

Class C

Vesicle

Protein aggregate

- Lipid aggregate ٠
- with lipid thread ٠

Strings of Lipid

Multi-lamella Lipid

Sheet

CLASSIFICATION OF IMAGED OBJECTS

Class							
A: Crystal with Lattice Pattern							
B: Tubular Vesicle, Vesicle Sheet and Physical Growth							
C: Vesicle, Vesicle Cluster, TV with irregular tubular vesicle							
D: Protein aggregate and lipid aggregate							
E: String of Lipid and Multi Lamella Lipid							
F: Aggregate or Precipitate in solution							

Class A

A 2DX SCREENING EXAMPLE

- A: Crystal lattice
- B: Tubular vesicle, sheets and physical growth
- C: Vesicle and vesicle cluster
- D: Protein aggregate and lipid aggregate
- E: Lipid string
- F: Failure, large precipitate (checked by light microcopy), bad staining, broken carbon, etc

pH7 4 -Δ B 3-C 🗆 D ∎E □F 2-**Object prevalence** E. Coli, 1.0 DMPC, 1.0 DOPC, 1.5 DOPG, 0.5 E. Coli, 1.5 POPC, 0.5 DMPC, 0.25 DMPC, 1.5 DOPC, 0.25 DOPC, 0.5 DOPC, 1.0 DOPG, 0.25 DOPG, 1.0 DOPG, 1.5 POPC, 0.25 POPC, 1.5 E. Coli, 0.25 DMPC, 0.5 E. Coli, 0.5 POPC, 1.0 pH8 A 🗖 B 🗆 C 3-🗖 D ■E ■F 2-_ DOPG, 1.5 DOPG, 1.5 Lipid type and LPR E. Coli, 1.5 DMPC, 1.5 DOPC, 0.5 E. Coli, 1.0 DMPC, 1.0 DMPC, 0.5 POPC, 1.5 E. Coli, 0.5

A HT SCREENING FOR 2DX: AN EXAMPLE

Integration with Sesame LIMS

🕌 Board Sheherazade						
Image Edit Window						
Brightness/Contrast					E % 4	
Rotate						
Sharpen						
🛃 Blur						
Edge Detect	Stock Solution				1	
Negative	469		Item No		1.0 M amm	
🔍 Zoom In	470				1.0 M amm	monium chloride pH 0.0
Q Zoom Out	471				1.0 M amm	monium citrate pH 0.0
Q Zoom To	472				1.0 M amm	monium sulphate pH 0.0
Original Display a large pa	rt of the image with less det	tail.			1.0 M calciu	cium acetate pH 0.0
R Print	474				1.0 M calciu	cium ascorbate pH 0.0
Set Grid	475				1.0 M calciu	cium chloride pH 0.0
Select Grid	488				12.0 mg/ml	T tubes (F4-4.jpg)
Unselect Grid	493				1.5 mg/mL	
Show Grid	499				1.5 mg/mL	L Contraction of the second seco
Construction	101				4 5 martinal	
Save image	Database No 0					
Save As New Image						A CONTRACT OF A
Save image File		WE.22 Sc	reen: X28_P2	2A3		
Close image		General	Screen Rese	ervoirs Screen Droplets Droplet	Scores	
		Well No.	Droplet No.	2009-10-14 10:39:48.0		
	5		1	3		
	6		1	2		
	18		1	2		
	9		1	2		Cart No. 2
	10	0	1	3		
	11	1	1	3		
	1: 13 14 15	2 3 4 5	1 1 1 1	Score 4 A Owner mvink 2009-10-14 10:39:48.0 Time 1 Ad FilUs 9 1 8 m F tu 9 2 9 m F tu 9 1 6 13 m F tu 9 1 1 1 10 m F tu 9 1		
Command successful	6			· · · ·		

🚜 start

🎒 Board Sheherazade

👍 Sheherazade

2D crystal morphologies

2D crystallography

• Fourier Transform composed of 2D lattice lines

Individual Projections
 sample lattice lines

Fitting of lattice lines

- Electron Diffraction: amplitudes
- Images: phases

unbending a disordered 2D lattice

		sca	led i	nten	sitie	s (pe	rimet	er av	erage	d to '	7.0)	scal	e fac	tor =		0.0000				sca	led i	ntens	ities	(pe)	rimete	er av	erage	d to	7 0)	scal	e fac	tor =		0 000
						-			-											Dou.	104 1		10100	(1901		JI UV	oraget		,,	boul	.0 140	001		0.000
Sec.42		7	6	5	7	7	7	6	5	6	6	6	9	7	7	7				7	7	6	7	7	6	6	6	6	6	7	7	7	6	7
		6	7	6	6	6	6	6	7	7	6	7	7	7	8	9				7	6	6	7	7	6	6	7	7	7	8	6	6	7	8
12000		6	7	7	7	7	7	7	7	7	8	7	7	6	11	9				7	6	7	6	8	7	6	7	6	8	6	8	8	8	6
1207-2		6	7	5	6	6	6	8	7	6	7	8	6	7	8	7				7	6	6	7	7	6	6	7	7	6	6	7	8	9	6
10.00		7	6	7	6	6	8	7	8	8	7	8	7	6	7	8				7	6	7	6	6	7	6	8	6	7	8	7	8	7	8
1.5		5	9	7	7	7	8	11	13	7	8	9	7	8	7	8				7	7	6	6	8	7	9	11	8	7	7	8	7	8	8
		6	8	7	6	8	10	18	30	8	9	8	7	7	7	6				, 7	, 7	7	7	7	, B	11	28	11	, 8	, 8	6	, 8	6	7
0.150		7	7	7	9	10	12	70	78	16	10	9	9	8	7	7				, 9	, 7	7	, 7	, a	12	42	196	21	12	9	9	7	7	,
10.0		8	7	7	10	10	13	36	29	15	10	12	7	6	8	8				6	,	7	, 0	7	10	12	27	0	- 10	0	0	,	7	
Sec. 1		8	6	6	7	8	8	9	10	8	9	8	6	7	7	6				6	0	,	9	,	10	13	10	0	0	0	0	0	,	0
14.94		9	8	7	8	8	9	8	9	6	7	7	7	7	6	7				6	6	8	9	/	/	9	10	6	8	6	8	6	8	8
1 all		8	8	8	7	8	8	8	9	7	7	8	7	7	7	7				8	8	8	7	8	.7	8	10	6	.7	.7	.7	6	8	6
		9	8	7	8	6	8	7	7	7	7	6	7	7	6	7				7	8	7	7	8	8	8	9	8	6	7	6	6	7	7
1.1.1		9	9	7	7	8	5	6	7	7	7	7	6	6	7	6				9	6	8	7	8	8	7	8	8	7	8	7	7	6	6
No.		12	8	6	8	8	7	7	7	6	6	8	6	5	5	7				9	9	7	7	8	7	7	6	7	6	8	7	6	6	7
State and																				8	8	9	7	8	6	6	7	6	7	6	7	6	7	7
	163 Total spots found 54 Good spots for output 109 Ead spots not used 10 NUMBER 1 11 2 7 3 3 4 6 5 11 6 5 7 11 8 48 9 61 (negatives)										IQ 1 2 3 4 5 6 7 7 8 9	163 84 79 NU	Total Good s Bad sp MBER 18 16 15 12 8 10 5 39 40 (spot: pots ots 1 negal	s fou for not u tives	nd outpu sed)	lt			8 3 3 4	CO	rre	ect	ed	im	ag	е							
というなかない																																		

missing cone

Ν

missing cone leads to loss of z resolution

У

🗧 2dx_image File Ed	dit Options		I 🖌 🖉 🖉
000	/Users/henning/Desktop/Protein	s/ILIO2/ILIO45/ILIO0000443500/	
	2dx_1	image	
	Version 1.0.1	(July 20, 2006)	
Standard Scripts	Processing Da	ata Standard	Results
📓 Initialization	Mai	nual	
Calculate FFT			
📓 Get Defocus & Tilt	Algorithm	Non tiltod	
👹 Get Lattice & Tilt	Algoriunn i	Non-ulled	0
👹 Get Spotlist			
👹 Unbend I		nask= Ipx	
👹 Unbend II	Raw FFT masktran	Masked	
Correct CTF	Mage World 20px Masked		
👹 Generate Map		Reference	
Specific Scripts	Unbent Image countered Profile quadwerth CC-Map	Reference	Images
Mask Crystal from Polygon			mILI00000443500.mrc
Evaluate Lattice		4	IL100000443500.mrc
Determine Spacegroup			
Generate SymMap	Perfect	Apply	Y
Refine Parameters Unbend I	FFT	P Defocus)	
Refine Parameters Unbend II	Image 51	la Data	
Refine Spotlist	Image Number	0000443500	
Refine Tilt from SpotSplitting	Image Name:	mil (0000443500	-
Image Inventory	Non-Masked Image Name:	11100000443500	-
Eleanup	Image Side Length	4000	— <u>U</u>
Image Header	Magnification	70000	-
ILI00000443500.mrc	Digitizer Step Size:	7	
NX, NY, NZ: 4000 4000	1 Tilt Coome	itry Data	QVal 146.7 Th.Mag 68081.6
Mode:	0 TITAXIS: X-axis -> Tiltaxis (on image):	-18 66013	-
Origin x,y,z: 0 0	1 TI TANG: Tiltanole for carbon film:	45 75145	IQ-1 QVal1 173.0
CellA: 4000 4000	1 TITAYA: Tiltavis -> A* vector (on image):	42 77612	11 16 19 32 32 54 39 213 31
CellB: 90 90	90 TAXA: Tilt axis -> A* vector (on sample):	22 84644	-
Basis Vectors: 1 2	3 TANA. THE AXIS -> A VECTOR (on sample).	22.04044	IQ-2 QVal2 146.7
Space Group:	0	Data	11 18 12 24 15 24 27 140 21
Symmetry Bytes:	0 Real lipit Cell Length:		Dofos Tatt Secolit Vers
Phase Origin: 0 0	0 Real Cell Angle:	91.7 89.7	TLTAXIS -17.5 -18.6 -18.6 -
RMS: Labels:		114.5	TLTANG 40.2 45.7 45.7 - TLTAXA 35.3 42.7 42.7 -
	Reciprocal Lattice: 51.	493 23.041 15.941 70.027	TAXA 28.4 32.8 32.8 -
		n n n	TANGL 40.2 45.7 45.7 -
			TANGL 40.2 45.7 45.7 -

$\Theta \Theta \Theta$						
	Unbend	I	_			
Standard Scripts	Processing D	lata		_	Results	
Mitialization	Fourier Filtering Uni	ending Data				
📓 Calculate FFT	holea (Fourier Mask Reference Generation First Unbending):	e î	2			
Determine CTF	maska (Fourier filter radius, first unbending):	Ē.	20			
🙀 Determine Lattice	boxa1 (Reference diameter first unbending):	- F	100	-		
📱 Unbend I	boxa2 (Ref. diam. first unbending SpotScan spots):	Ē.	300			
📱 Unbend II	quadrada (Radius for QUADSERCH, first unbending):	E C	5	-		
Apply CTF Correction	Factor CC-Threshold, first unbending:		0.13	-		
📓 Generate Map	guadpreda (OUADSERCH prediction range, first unbending);		7	-		
	Common Image Pro	cessing Data				
	Upper Resolution Limit:		7.0			
	ALAT (Z-dimension of unit cell to reconstruct):		200.0	-		
	RADLIM:	35.0	35.0 0.0			
Specific Scripts	Switches for Algorit	hm Selection			Images	
📓 Refine MaskA	treunt: Treat as non-tilted image?:		🔘 Yes 🔎 No			
Refine HoleA	TTF correction before unbending ?:		Yes No			
🖉 Example	Treat SpotScan image ?:		🔘 Yes 💽 No			
🖉 Calculate Status						
🕱 Cleanup						
🕱 Image Inventory						
😹 Generate SymMap						
Determine Spacegroup						
		~				
No. of the local division of the local divis	O O O Logfile - Low Ve	rbosity			Status	
	babb - to cat centre of the fiftered			QVal = 3	Theor. Mag	=50300
24 - 24 -	===== AUTOCORRL - to calculate the autocorr	elation of the bo	oxed reference =====			
Sec. Sec.				IQ-1		
	===== LABEL - to cut central region from th	e autocorrelation	1 map ======	1 2 4 9	5 6 6 7 8	9
CARLES AND AND A	===== BOXIMAGE - to box out reference for c	ross-correlation		IQ-2		
and the second second				1 2 2 3	2 3 4 5 6	7
20 - 20 - 20	===== FFTRANS - to calculate FFT from refer	ence patch =====				
Start Start				TLTAXIS		merge
1.	====== TWOFILE - to calculate cross-correlat	ion ====================================		TLTANG		
LI BULLISI	QUADSERCH - to search cross-correlati	on map for peaks		TAXA		
	===== with IPASS=1 to find first ERROR fiel	d		TANGL		

i 🖻

Image Processing Library & Toolbox (IPLT) (Philippsen, Schenk, Engel)

IPLT unbending simulations

ACKNOWLEDGEMENTS

Changki Kim Minghui Hui Martin Vink Iban Ubarretxena

Bill Rice KD Derr Ruben Diaz

Bridget Carragher Clint Potter Jim Pulokos Anchi Cheng

James Love Filippo Mancia Ming Zhou Wayne Hendrickson

JKD instruments John Koss Kevin D'amico

