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Clustering in 3D

The problem of detecting heterogeneity In
2D

Maximum Likelihood
Two simple examples

Hidden variables and the EM algorithm



An example of heterogeneity
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Representation of 3D models in 2




Representation of 3D models in 2
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Clustering
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Representation of 2D projections in 2\
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In the presence of noise, It’s hard to sort the particle
Images.
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Introduction to maximum-likelihood methods

When we do a single-particle reconstruction, what is the quantity that we
are maximizing?

Conventional align-and-average methods maximize the power in the
reconstructed volume.

ML methods maximize a statistical quantity that is not rigorously a
orobability, so it's called the likelihood.

« Let ® be a description of the model, i.e. the density maps of the
reconstructions.

 Let X be the data, that is the collection of acquired images.

« Then P(®|X) would be the probability of the model ® being the
correct one.



Introduction to maximum-likelihood methods

Given a stack of images X = {)g X0 XN} find the best “model”,
that is the set of reconstructions and other parameters

O={W.Y,...V,,a,a,,..,4,,0}

=y U

What criterion should be used for the “best?”

How about maximizing the probability of the reconstructions given

the data,
P(O | X)



P(O | X) s difficult to compute...or define...
However, we can compute P(X|®). Let's

define the likelihood as a function of ®

Lik(®) = P(X|®)



MLE and MAP Estimation

The probability of the model is related to the likelihood by Bayes' theorem,

p(0O)
p(x)

p@Ix)=p(x|O)

The maximum-likelihood estimate (MLE) optimizes p(x10).

Experiment — @®

The maximum a posteriori estimate (MAP) optimizes p(x10)p(0®).

0(®) — Experiment — @

a priori a posteriori



MLE Example 1: Gaussian random numbers

Lik = £f(x,)- €f(x,) - s €f () T
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where £ is the measurement resolution and the pdf is 0.008
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MLE Example 1: Gaussian random numbers

To maximize L we set the derivatives to zero, 0.285
0.826
N ] & -0.008
L=Nln(g)- 5111(2?1‘0'3) aby 2.(x —py .-
=1 0.775
1.306
oL 1 N 1.232
a_ =0 = H=E X; 0.959
H i=1 -1.655
-0.990
oL 1 &
— =0 = o’=—) (x. — u)° T T
do N E‘( -~ H) _
20+ 7/’“_
In this case the MLE is equal to the |least-squares estimate. | '




Example 2: Mixture of Gaussians
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Taking the derivatives of L is not going to be easy. How to maximize it? 1.1833
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Example 2: Mixture of Gaussians

X
N

0.9863 0
Suppose we had extra information in the form of “switch variables” z.. Then 2.9980 1
estimating the two mean values and the weights would be really easy: 1.8384 0
0.2488 0
Z Z,X, z (1-2z)x 1.6752 0
i, = L, = 2.6736 1
z < Z(l - Z) 2.0572 1
q ‘ 1 ‘ 2.6596 1
a=—)>2z a, = —Z(l —-Z,) 3.6584 1
N5 N =
! : 2.4223 1
a0
25
20 { p ;_'“ :H_
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Example 2: Mixture of Gaussians

0.9863 0.8236
The EM algorithm 2.9980 0.0111
1.8384 0.2660
. . . 0.2488 0.9771
Given estimates of the unknown model variables p,, 4, ,a,and a,,
, , 1.6752 0.3716
compute expectation values of the z's: ) 6736 0 0067
2.0572 0.1582
5 = a f(x;) 7 = a,f,(x;) 2.6596 0.0299
i 2 =
af(x)+a,f(x) afx)ta,f(x) 3.6584 0.0015
2.4223 | 0.0591
Use these instead of the true z's!
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Example 2: Mixture of Gaussians

start 1 iteration
1 L=-12079.9 means=-3.00, 3.00 sigmas= 1.00, 1.00 a1=0.20 2 L=4249.1 means=-0.90, 1.82 sigmas= 1.00, 1.00 a1=0.21
a0 : : : : a0 : . . :
B0} GO |
40 40 |
201 a0 |
0 = 1
-4 -2 0 2 4 B -4 -2 0 2 4 B
1 1
0.8} 0.8 |
0.6 | 06 |
Z 1-z
04} 04|
0.2} 0.2}
0L i 0L
< -2 0 2 4 B -4 0 2 4 a
a0 a0
s0 | data weighted by 6 |
40 40 |
201 ant
| \ D I
< -2 0 2 4 B -4 0 2 4 a

25 L=4620.7 me
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ans=-0.02, 249 sigmas=1.00, 1.00 al1=0.50




Likelihood with hidden variables

The general problem is formulated this way.

X = {xl , X, .._xN} is the set of observed data;

Z= {21 2, ,..zM} is a set of hidden variables.

Suppose it's easy to compute the probability p(x,z|®) of the complete data

set {xl,xg...xﬁ,zl,zz...zm}.

By doing an integral over all values of the z's we can get the log likelihood:

L=1In | p(x,210) p(z1x,0) dz



The reconstruction problem

X = {xl , X, .._xN} Is the set of images;

Z= {21 1L 5enyy } Is the set of alignment parameters (Euler angles and
translations) for each image.

It is easy to compute the probability p(x,z | ®) of the images, with the
alignment parameters known.

In the end we don’t care about the alignment parameters, and just integrate
them out:

L=1In|p(x,210) p(z|x,0) dz

But, maximizing L is still not simple...



The EM Algorithm

One way to increase the likelihood is to use the Expectation Maximization
algorithm, which has two conceptual steps.

1. Given a previous estimate of the model parameters ©“9
compute the expectation

0(©) = |In p(x,210)p(z | x,0)dz

2. Maximize each parameter of the model by solving

00@O"")
oL

0

Dempster Blair and Rubin, 1977



Example 3: 1D alignment

Suppose we have many instances x; of a 1D signal buried in noise, and its
relative time of arrival is z. Can we reconstruct it?

In this case @ =y is the reconstructed signal and the Q function is

0()=2.2 % -Ty

“p(zlx,y)

and the EM iteration is

y* =3 2 Txpalx,y )

with the “switch variable™ probability
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Example 3: 1D alignment
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ML 3D Reconstruction

ML 3D reconstruction reduces to this problem:

Maximize the quantity (I've left out some constants)

Zj lx, - R, (V,)

(x5 10)dg
0=2, Y. | p(x..0.510““)dp

i

Q is maximized with respect to each voxel of each reconstructed volume,
plus a few other parameters (e.g. o). The maximization was done using an

algebraic reconstruction technique by Scheres, Carazo et al.

MNotice that both the numerator and denominator involve an integral over all
five alignment parameters and a sum over the conformations.

0={Y,Y,....a,4a,..0}



o(X,z | ®)s easy to compute??

Assuming independent Gaussian noise in each of P pixels in an image, the
probability for one image is

2

.
e ] x,—R, (V,)
cX —_
P 20°

p(x;,0,,,10)= [

2N0O

\
where

x, is the image
@, .k, are the corresponding hidden parameters (alignment, conformation)
R, is the projection operator

V. is the k™ reconstruction volume (an element of ©)

The other quantity we need for the EM algorithm is the probability of the
hidden variables

p(x,,9,510)
Y. [ p(x,.0.x10)dp

p(o.x | x, ,0) =



ML 3D Reconstruction

ML 3D reconstruction reduces to this problem:

Maximize the quantity (I've left out some constants)

Ej Hx ~R, (V,)

v p(x,,0,x10°7)dd
Q=) -+
; Z JP(IJ 5¢:K I @I:HMJ }dqb

Q is maximized with respect to each voxel of each reconstructed volume,
plus a few other parameters (e.g. o). The maximization was done using an

algebraic reconstruction technique by Scheres, Carazo et al.

Notice that both the numerator and denominator involve an integral over all
five alignment parameters and a sum over the conformations.



ML 3D Reconstruction

Structure

Modeling Experimental Image Formation
for Likelihood-Based Classification
of Electron Microscopy Data

Sjors HW. Scheres,” Rafael NOfez-Ramirez,” Yacob Gomez-Llorente,” Carmen San Martin,”
Paul P.B. Eggermont,© and José Maria Carazo®*




MLE and MAP Estimation

The probability of the model is related to the likelihood by Bayes' theorem,

p(0O)
p(x)

p@Ix)=p(x|O)

The maximum-likelihood estimate (MLE) optimizes p(x10).

Experiment — @®

The maximum a posteriori estimate (MAP) optimizes p(x10)p(0®).

0(®) — Experiment — @

a priori a posteriori



MAP Estimation

For example, suppose we know that our particle images are
approximately centered. We could include this prior
knowledge as a prior probabillity term

1 [ 2 +1t2)
p(t,.t )= exp| ———~
N oo, 27

Another example would be the prior knowledge that outside
our particle volume the density Is constant (solvent flattening).
Formally, we would say that the prior probability is low
whenever the voxels outside the volume are nonzero. In the

EM algorithm this is imposed simply by zeroing these voxels at
each iteration of reconstruction.



2. Flexible particle reconstruction

Fred Sigworth
Hemant Tagare
Hongwel Wang

Yale University



Dicer i1s a 200 kDa RNA-processing protein

Architecture of human Dicer. (a) Negative-stain micrograph. (b) 3D reconstruction
of human Dicer shown in four different orientations.



Depending on the substrate, Dicer shows flexibility

LR ARA L

Class averages of a preferred view of Dicer alone,
IN negative stain.

B ENES Y

SRLG e

Class averages of Dicer + RNA substrate



In the conventional method, multiple 3D reconstructions
are made from a set of data images.

From the N images, a set of M reconstructions are made.

But there is a penalty for having M large, as only ~N / M images
contribute to each reconstruction.
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2 33393333300
>
3
I I
AAAAAANAAN




Proposal: use a continuous “warping” to describe
motions

A diffeomorphism (differentiable and invertible warping) is used to map
each of a set of structures to a reference state. The reference state
could then be reconstructed to high resolution.

Here is an example of a two-dimensional diffeomorphism:

.




The 3D reconstruction algorithm

During reconstruction, the
L, are constrained to all
be warpings of the “flex -
mean” . .

S )
0 v A > M

Iterations optimize an
objective function that

FPR Extension

enforces the warping

constraints, and also -

ensures that the
warpings are smooth.

This 3D algorithm hasn't
been implemented yet.

Conventional SPR




Example of the algorithm in 2D, on Dicer preferred
Views.

Initial class means
Mk

Final class means

g

~
L=
T T

Wo of Data Foints
B B & B8 B

Class membership,
initially and
finally.

=]
T

=}

Class MMumber

For the first iteration, the p, were initialized by adding a variable amount
of the top PCA eigenimage to the global mean.



The flex mean reconstruction IS better.

Improved reconstruction quality with FPR.
A, a single class mean from standard SPR. B,
the FPR result, the warped mean ¢o u .

See the poster by Hemant Tagare et al. for more
details.
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