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Time Complexity

n nlgn n2 n3 1.5n 2n n!

n = 10 <1 sec <1 sec <1 sec <1 sec <1 sec <1 sec 4 sec

n = 30 <1 sec <1 sec <1 sec <1 sec <1 sec 18 min 1025 years

n = 50 <1 sec <1 sec <1 sec <1 sec 11 min 36 years very long

n = 100 <1 sec <1 sec <1 sec 1 sec 12,892 years 1017 years very long

n = 1,000 <1 sec <1 sec 1 sec 18 min very long very long very long

n = 10,000 <1 sec <1 sec 2 min 12 days very long very long very long

n = 100,000 <1 sec 2 sec 3 hours 32 years very long very long very long

n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

very long:  greater than 1025 years
age of the universe: 1.37X1010 years

p = np?: priceless

Adapted from Algorithm Design, Kleinberg and Tardos



u(i) = o(i) + n(i)

Denoising
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x = distance from zero
σ = sigma
N = normalization factor
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Bilateral Filter
Applications of a bilateral denoising filter in biological

electron microscopy
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Abstract

Due to the sensitivity of biological sample to the radiation damage, the low dose imaging conditions used for electron microscopy
result in extremely noisy images. The processes of digitization, image alignment, and 3D reconstruction also introduce additional
sources of noise in the final 3D structure. In this paper, we investigate the effectiveness of a bilateral denoising filter in various
biological electron microscopy applications. In contrast to the conventional low pass filters, which inevitably smooth out both noise
and structural features simultaneously, we found that bilateral filter holds a distinct advantage in being capable of effectively
suppressing noise without blurring the high resolution details. In as much, we have applied this technique to individual micrographs,
entire 3D reconstructions, segmented proteins, and tomographic reconstructions.
! 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Electron cryomicroscopy is an emerging powerful
technology in solving the 3D structures of large mac-
romolecular assemblies and cellular complexes (Bau-
meister, 2002; Baumeister and Steven, 2000; Chiu et al.,
2002; Frank, 2002; Sali et al., 2003). Due to the inherent
sensitivities for biological molecules to the high energy
electron radiations, imaging must be conducted using
low dose conditions (Glaeser and Taylor, 1978). While
low temperature at liquid nitrogen (78K) or even liquid
helium (4K) have been employed to increase the radi-
ation dose tolerance, the maximal allowed dose is still
limited to very low levels. As a result, images are ex-
tremely noisy compared to other imaging techniques
such as light microscopy, CT, and MRI. In addition,
digitization noise, computational errors in image pro-
cessing, and 3D reconstruction also contribute extra
level of noise in the final 3D map. The image processing

procedures including particle selection, particle orien-
tation determination, contrast transfer function correc-
tion, 3D reconstruction, and structural analysis of the
reconstructions are sensitive to various levels of noise.
The accuracy of these algorithms is inversely correlated
to the level of noise in the data (Joyeux and Penczek,
2002). In such, it would be useful to be able to minimize
the noise level in the data to improve the image pro-
cessing accuracy, which will in turn improve the 3D
reconstructions and structural analysis.

Many image filters have been developed to suppress
the noise, such as low pass, Wavelet transforms, median
filters, etc. (Gonzalez and Woods, 2002). A fundamen-
tally important property for any filter to possess, but
often lacking, is the ability to maximally suppress noise
solely without affecting much of the true signal. The
bilateral filter is designed to achieve this goal by striking
a fine balance between minimizing noise and losing
signal. The bilateral filter is a relatively new filter pro-
posed originally to denoise 2D photographic images
and has been shown to be very effective in achieving
this goal (Tomasi and Manduchi, 1998). In this study,
we continue to explore filtering by investigating the
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Bilateral Filter

• Brute-force Implementation
• full O(n2) ---> truncated O(nσ2)

• Box Kernel [1]

• O(nlgσ) very fast, repeat for accuracy
• 3D Kernel [2]

• O(n+(n/σ2)(r/σ)) fast, accurate
• GPU implementation [3] (very fast)

[1] Fast median and bilateral filtering, Ben Weiss
[2] A Fast Approximation of the Bilateral Filter using a Signal Processing Approach, Sylvain Paris and Frédo Durand

Code and paper: http://people.csail.mit.edu/sparis/bf/
[3] Real-time Edge-Aware Processing with the Bilateral Grid, Jiawen Chen, Sylvain Paris, Frédo Durand

Code and paper: http://groups.csail.mit.edu/graphics/bilagrid/

http://people.csail.mit.edu/sparis/bf/
http://people.csail.mit.edu/sparis/bf/
http://groups.csail.mit.edu/graphics/bilagrid/
http://groups.csail.mit.edu/graphics/bilagrid/
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Wavelet Denoising
Pattern Recognition 39 (2006) 1205 – 1213
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Abstract

In this work we discuss an improvement of the image-denoising wavelet-based method presented by Bijaoui [Wavelets, Gaussian
mixtures and Wiener filtering, Signal Process. 82 (2002) 709–712]. We show that the parameter estimation step can be replaced by a
constrained nonlinear optimization. We propose three different methods to estimate the parameters. As in Bijaoui’s original article, two
of them deal with white noise. We show that the resulting algorithms improve the one originally proposed. Our third method extends
the applicability of the denoising algorithm to colored noise. We test our algorithms with images simulating electron microscopy (EM)
conditions as well as experimental EM images.
! 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords: Image denoising; Bayesian filtering; Wavelets

1. Introduction

Many are the papers addressing the problem of image de-
noising using wavelets [1]. In brief, all these algorithms first
perform the wavelet transform of the image to denoise, then
apply some filter to the wavelet coefficients, and finally take
the inverse wavelet transform to restore the denoised im-
age. Most popular wavelet-filtering algorithms are based on
thresholding [2], Wiener filtering [3] and Bayesian filtering
[4–7]. In fact, Bayesian filtering in the wavelet space has be-
come the standard in the field and the work of Portilla et al.
[7] represents the current state of the art of the algorithms
employed.

Bijaoui [1] introduced a Bayesian approach to image de-
noising in wavelet space shown to be superior to a num-
ber of previous thresholding or Wiener-filtering algorithms.

∗ Corresponding author. Tel.: +34 91 372 4033; fax: +34 91 372 4049.
E-mail address: coss.eps@ceu.es (C.O.S. Sorzano).

0031-3203/$30.00 ! 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2005.12.009

However, as is shown in this paper, the parameter estimation
step of this algorithm can be substantially improved. As an
alternative, we propose three different methods to estimate
the noise and signal parameters, keeping the Bayesian de-
noising step proposed by Bijaoui [1]. Each method is based
on different assumptions and, ultimately, they solve a linear
equation system in a least-squares sense subject to a number
of reasonable constraints.

We tested our algorithms on a set of simulated as well as
experimental EM images as used in single-particle structural
studies of macromolecular complexes [8]. The final goal
of this kind of studies is to elucidate the three-dimensional
structure of the specimen electron density combining dif-
ferent projection images taken with an electron microscope.
One of the advantages of this technique is the wide range
of specimen sizes that can be studied: from cellular or-
ganelles like the ribosome, to viruses, protein complexes, or
individual proteins. Another advantage, particularly when
dealing with proteins or protein complexes, is that the



Wavelet Denoising

• Decomposition and Recomposition in O(n)
• Choice of wavelet functions
• Choice of wavelet filter methods

• Thresholding [1]

• Wiener Filtering [2]

• Bayesian Filtering [3]

[1] Adaptive wavelet thresholding for image denoising and compression, Chang, S.G., Bin Yu, Vetterli, M.
[2] J.L. Starck, A. Bijaoui, Filtering and deconvolution by the wavelet transform, Signal Process. 35 (1994) 195–211
[3] J. Portilla, V. Strela, M.J. Wainwright, E.P. Simoncelli, Denoising using scale mixtures of Gaussians in the wavelet
     domain, IEEE Trans. Image Process. 12 (2003) 1338–1351
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Denoising Overview

• Bilateral Filters

• Very, very efficient ( Fast CPU and GPU implementations )

• Decent Noise Reduction

• Wavelet Filters

• Very Efficient

• Better Noise Reduction

• NL-Means

• SLOW

• State-of-the-art (on images, unknown for EM Images)



MSER
Maximally Stable Extremal Regions



MSER
Maximally Stable Extremal Regions



MSER
Maximally Stable Extremal Regions



MSER
Maximally Stable Extremal Regions



MSER
Maximally Stable Extremal Regions



MSER
Maximally Stable Extremal Regions



MSER
Maximally Stable Extremal Regions

R
eg

io
n 

Si
ze

Pixel Values



MSER
Maximally Stable Extremal Regions

R
eg

io
n 

Si
ze

Pixel Values

δ δ



MSER
Maximally Stable Extremal Regions

• Very efficient, O(nα(n)), α(1X10500) < 4 

• Easily extendable to higher dimensions

• Suitable for particle segmentation in 
conjunction with other image processing

• Suitable for 3D map segmentation

[1] Robust wide baseline stereo from maximally stable extremal regions. J. Matas, O. Chum, U. Martin, and T Pajdla. 
Proceedings of the British Machine Vision Conference, volume 1, pages 384-393, 2002. 

Papers:  http://cmp.felk.cvut.cz/~matas/
[2] An Implementation of Multi-Dimensional Maximally Stable Extremal Regions.  Andrea Vedaldi

Code(C+Matlab) and PDF: http://vision.ucla.edu/~vedaldi/code/mser/mser.html

http://cmp.felk.cvut.cz/~matas/
http://cmp.felk.cvut.cz/~matas/
http://vision.ucla.edu/~vedaldi/code/mser/mser.html
http://vision.ucla.edu/~vedaldi/code/mser/mser.html
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Abstract

The automation of single particle selection and tomographic segmentation of asymmetric particles and objects is facilitated by contin-
uing improvement of methods based on the detection of pixel discontinuity. Here, we present the new arbitrary z-crossings approach
which can be employed to enhance the accuracy of edge detection algorithms that are based on the second derivative. This is demon-
strated using the Laplacian of Gaussian (LoG) filter. In its normal implementation the LoG filter uses a z value of zero to define edge
contours. In contrast, the arbitrary z-crossings approach allows the user to adjust z, which causes the subsequently generated contours to
tend towards lighter or darker image objects, depending on the sign of z. This functionality has been coupled with an additional feature:
the ability to use the major and minor axes of bounding contours to hone automated object selection. In combination, these features
significantly enhance the accuracy of particle selection and the speed of tomographic segmentation. Both features have been incorporated
into the software package SwarmPS in which parameters are automatically adjusted based on user defined target selection.
! 2007 Elsevier Inc. All rights reserved.

Keywords: Single particle analysis; Image processing; Particle selection; Software; Edge detection; Laplacian of Gaussian; Cryo-electron microscopy

1. Introduction

Advances in cryo-electron microscopy (cryo-EM) and
image processing are yielding structural information of
biological samples with ever increasing resolution. In par-
ticular, EM tomography, single particle analysis and elec-
tron crystallography are resolving the structures of
subcellular volumes, macromolecular assemblies and
individual proteins, to !50 Å (Baumeister, 2002), !6 Å
(Ludtke et al., 2004; van Heel et al., 2000), and !1.8 Å
(Gonen et al., 2005), respectively.

High resolution data recovery is essentially dependent
on the ability to resolve signal from noise. In the case of
cryo-EM, this task is complicated by imaging under low
electron dose exposures (!10–30 e-/Å2) which minimize

beam damage to the sample (Adrian et al., 1998) but also
decrease the signal to noise ratio (SNR) of the image.
The poor SNR of cryo-EM images is also due to differences
in the thickness of the ice in which the sample is embedded,
aberrations of the optical system as reflected in the contrast
transfer function (CTF) (Mallick et al., 2005; Toyoshima
and Yonekura, 1993; Wade, 1992), exponential decay of
information transfer attributed to the microscope envelope
functions (De Graef, 2003), shot noise (Downing and
Hendrickson, 1999), cosmic rays, X-rays (Brink and Chiu,
1994) and the point spread function of the detector (Zhu
et al., 1997). In addition high-frequency impulse noise
due to hard and soft X-ray events produce a signal near
saturation over 1–3 pixels (Downing and Hendrickson,
1999).

In single particle analysis, high resolution data recov-
ery depends on the alignment and averaging of a large
number of particles to reduce the effects of noise. Wiener
filtering, which optimizes the recovery of signal from

1047-8477/$ - see front matter ! 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jsb.2007.03.003
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DoG≈LoG
Cascaded Blurs
σ1 = 10.0
σ2 = 4.6
σ3 = 5.0
σ4 = 5.5
σ5 = 6.1
σ6 = 6.7
σ7 = 7.4
σ8 = 8.1
σ9 = 8.9
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