Computer Vision and EM

Time Complexity

	n	nlgn	n ²	n ³	1.5 ⁿ	2 ⁿ	n!
n = 10	<l sec<="" td=""><td><l sec<="" td=""><td><l sec<="" td=""><td><l sec<="" td=""><td><l sec<="" td=""><td><l sec<="" td=""><td>4 sec</td></l></td></l></td></l></td></l></td></l></td></l>	<l sec<="" td=""><td><l sec<="" td=""><td><l sec<="" td=""><td><l sec<="" td=""><td><l sec<="" td=""><td>4 sec</td></l></td></l></td></l></td></l></td></l>	<l sec<="" td=""><td><l sec<="" td=""><td><l sec<="" td=""><td><l sec<="" td=""><td>4 sec</td></l></td></l></td></l></td></l>	<l sec<="" td=""><td><l sec<="" td=""><td><l sec<="" td=""><td>4 sec</td></l></td></l></td></l>	<l sec<="" td=""><td><l sec<="" td=""><td>4 sec</td></l></td></l>	<l sec<="" td=""><td>4 sec</td></l>	4 sec
n = 30	<l sec<="" td=""><td><l sec<="" td=""><td><l sec<="" td=""><td><l sec<="" td=""><td><l sec<="" td=""><td>18 min</td><td>10²⁵ years</td></l></td></l></td></l></td></l></td></l>	<l sec<="" td=""><td><l sec<="" td=""><td><l sec<="" td=""><td><l sec<="" td=""><td>18 min</td><td>10²⁵ years</td></l></td></l></td></l></td></l>	<l sec<="" td=""><td><l sec<="" td=""><td><l sec<="" td=""><td>18 min</td><td>10²⁵ years</td></l></td></l></td></l>	<l sec<="" td=""><td><l sec<="" td=""><td>18 min</td><td>10²⁵ years</td></l></td></l>	<l sec<="" td=""><td>18 min</td><td>10²⁵ years</td></l>	18 min	10 ²⁵ years
n = 50	<l sec<="" td=""><td><l sec<="" td=""><td><l sec<="" td=""><td><l sec<="" td=""><td>II min</td><td>36 years</td><td>very long</td></l></td></l></td></l></td></l>	<l sec<="" td=""><td><l sec<="" td=""><td><l sec<="" td=""><td>II min</td><td>36 years</td><td>very long</td></l></td></l></td></l>	<l sec<="" td=""><td><l sec<="" td=""><td>II min</td><td>36 years</td><td>very long</td></l></td></l>	<l sec<="" td=""><td>II min</td><td>36 years</td><td>very long</td></l>	II min	36 years	very long
n = 100	<l sec<="" td=""><td><l sec<="" td=""><td><l sec<="" td=""><td>l sec</td><td>12,892 years</td><td>10¹⁷ years</td><td>very long</td></l></td></l></td></l>	<l sec<="" td=""><td><l sec<="" td=""><td>l sec</td><td>12,892 years</td><td>10¹⁷ years</td><td>very long</td></l></td></l>	<l sec<="" td=""><td>l sec</td><td>12,892 years</td><td>10¹⁷ years</td><td>very long</td></l>	l sec	12,892 years	10 ¹⁷ years	very long
n = 1,000	<l sec<="" td=""><td><l sec<="" td=""><td>l sec</td><td>18 min</td><td>very long</td><td>very long</td><td>very long</td></l></td></l>	<l sec<="" td=""><td>l sec</td><td>18 min</td><td>very long</td><td>very long</td><td>very long</td></l>	l sec	18 min	very long	very long	very long
n = 10,000	<l sec<="" td=""><td><l sec<="" td=""><td>2 min</td><td>12 days</td><td>very long</td><td>very long</td><td>very long</td></l></td></l>	<l sec<="" td=""><td>2 min</td><td>12 days</td><td>very long</td><td>very long</td><td>very long</td></l>	2 min	12 days	very long	very long	very long
n = 100,000	<l sec<="" td=""><td>2 sec</td><td>3 hours</td><td>32 years</td><td>very long</td><td>very long</td><td>very long</td></l>	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	l sec	20 sec	12 days	31,710 years	very long	very long	very long

Adapted from Algorithm Design, Kleinberg and Tardos

very long: greater than 10^{25} years age of the universe: 1.37×10^{10} years p = np?: priceless

Denoising

$$G(x) = Ne^{\frac{x^2}{2\sigma^2}}$$

$$N = \frac{1}{(2\pi\sigma^2)^{\frac{n}{2}}} \qquad \begin{bmatrix} x &= \text{ distance from zero} \\ \sigma &= \text{ sigma} \\ N &= \text{ normalization factor} \\ n &= \text{ number of dimensions} \end{bmatrix}$$

$$G(x) = Ne^{\frac{x^2}{2\sigma^2}}$$

$$N = \frac{1}{(2\pi\sigma^2)^{\frac{n}{2}}} \qquad \begin{bmatrix} x &= \text{ distance from zero} \\ \sigma &= \text{ sigma} \\ N &= \text{ normalization factor} \\ n &= \text{ number of dimensions} \end{bmatrix}$$

*

 $G(x) = Ne^{\frac{x^2}{2\sigma^2}}$ $N = \frac{1}{(2\pi\sigma^2)^{\frac{n}{2}}}$ x = distance from zero $\sigma = \text{sigma}$ N = normalization factorn = number of dimensions

$$G(x) = Ne^{\frac{x^2}{2\sigma^2}}$$

$$N = \frac{1}{(2\pi\sigma^2)^{\frac{n}{2}}} \qquad \begin{bmatrix} x &= \text{ distance from zero} \\ \sigma &= \text{ sigma} \\ N &= \text{ normalization factor} \\ n &= \text{ number of dimensions} \end{bmatrix}$$

$$G(x) = Ne^{\frac{x^2}{2\sigma^2}}$$

$$N = \frac{1}{(2\pi\sigma^2)^{\frac{n}{2}}} \qquad \begin{bmatrix} x &= \text{ distance from zero} \\ \sigma &= \text{ sigma} \\ N &= \text{ normalization factor} \\ n &= \text{ number of dimensions} \end{bmatrix}$$

1

Applications of a bilateral denoising filter in biological electron microscopy

Wen Jiang,^a Matthew L. Baker,^a Qiu Wu,^b Chandrajit Bajaj,^b and Wah Chiu^{a,*}

 ^a Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
 ^b Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712, USA

Received 20 August 2003, and in revised form 17 September 2003

- Brute-force Implementation
 - full O(n²) ---> truncated O(n σ^2)
- Box Kernel [1]
 - $O(nlg\sigma)$ very fast, repeat for accuracy
- 3D Kernel [2]
 - $O(n+(n/\sigma^2)(r/\sigma))$ fast, accurate
 - GPU implementation [3] (very fast)
- [1] Fast median and bilateral filtering, Ben Weiss
- [2] A Fast Approximation of the Bilateral Filter using a Signal Processing Approach, Sylvain Paris and Frédo Durand Code and paper: <u>http://people.csail.mit.edu/sparis/bf/</u>
- [3] Real-time Edge-Aware Processing with the Bilateral Grid, Jiawen Chen, Sylvain Paris, Frédo Durand Code and paper: <u>http://groups.csail.mit.edu/graphics/bilagrid/</u>

 $- \Lambda \Lambda$

0 0100 10

0 0100 10

A

 $\wedge \qquad \wedge$

0 0100 10

A

 \square

0.01.00.10

- \wedge \wedge \wedge

Wavelet Denoising

Improved Bayesian image denoising based on wavelets with applications to electron microscopy

C.O.S. Sorzano^{a, b,*}, E. Ortiz^a, M. López^c, J. Rodrigo^d

^aDept. Sistemas Electrónicos y de Telecomunicación, Escuela Politécnica Superior, Univ. San Pablo-CEU, Urb. Montepríncipe s/n, Boadilla del Monte, 28668 Madrid, Spain ^bBiocomputing Unit, National Center of Biotechnology (CSIC), Campus Univ. Autónoma s/n, 28049 Madrid, Spain ^cDept. Matemática e Informática Aplicadas a la Ingeniería Civil, E.T.S. Ingenieros de Caminos, Univ. Politécnicade Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain ^dDept. Matemática Aplicada, E.T.S. Ingeniería, Univ. Pontificia Comillas, c/Alberto Aguilera, 23, 28015 Madrid, Spain

Received 14 June 2004; received in revised form 1 December 2005; accepted 1 December 2005

Wavelet Denoising

- Decomposition and Recomposition in O(n)
- Choice of wavelet functions
- Choice of wavelet filter methods
 - Thresholding [1]
 - Wiener Filtering [2]
 - Bayesian Filtering [3]

^[1] Adaptive wavelet thresholding for image denoising and compression, Chang, S.G., Bin Yu, Vetterli, M.

^[2] J.L. Starck, A. Bijaoui, Filtering and deconvolution by the wavelet transform, Signal Process. 35 (1994) 195-211

^[3] J. Portilla, V. Strela, M.J. Wainwright, E.P. Simoncelli, Denoising using scale mixtures of Gaussians in the wavelet domain, IEEE Trans. Image Process. 12 (2003) 1338–1351

Non-Local Means Filter

(b)

(c)

(a)

Method Noise

Denoising Overview

- Bilateral Filters
 - Very, very efficient (Fast CPU and GPU implementations)
 - Decent Noise Reduction
- Wavelet Filters
 - Very Efficient
 - Better Noise Reduction
- NL-Means
 - SLOW
 - State-of-the-art (on images, unknown for EM Images)

- Very efficient, $O(n\alpha(n))$, $\alpha(I \times I0^{500}) < 4$
- Easily extendable to higher dimensions
- Suitable for particle segmentation in conjunction with other image processing
- Suitable for 3D map segmentation

[1] Robust wide baseline stereo from maximally stable extremal regions. J. Matas, O. Chum, U. Martin, and T Pajdla. Proceedings of the British Machine Vision Conference, volume 1, pages 384-393, 2002.

Papers: <u>http://cmp.felk.cvut.cz/~matas/</u>

[2] An Implementation of Multi-Dimensional Maximally Stable Extremal Regions. Andrea Vedaldi Code(C+Matlab) and PDF: <u>http://vision.ucla.edu/~vedaldi/code/mser/mser.html</u>

It's LoG!

The Laplacian of Gaussian and arbitrary z-crossings approach applied to automated single particle reconstruction

David Woolford^a, Ben Hankamer^a, Geoffery Ericksson^{b,*}

^a Institute for Molecular Bioscience, Brisbane, Qld 4072, Australia ^b Queensland Brain Institute, University of Queensland, Brisbane, Qld 4072, Australia

Received 21 November 2006; received in revised form 7 March 2007; accepted 7 March 2007

Gaussian Curves

Search Range $\sigma_1 = 10.0$ $\sigma_2 = 11.0$ $\sigma_3 = 12.1$ $\sigma_4 = 13.3$ $\sigma_5 = 14.6$ $\sigma_6 = 16.1$ $\sigma_7 = 17.7$ $\sigma_8 = 19.5$ $\sigma_9 = 21.4$

Search Range $\sigma_1 = 10.0$ $\sigma_2 = 11.0$ $\sigma_3 = 12.1$ $\sigma_4 = 13.3$ $\sigma_5 = 14.6$ $\sigma_6 = 16.1$ $\sigma_7 = 17.7$ $\sigma_8 = 19.5$ $\sigma_9 = 21.4$

The Shortcut:

$$\sigma_{n} = \sqrt{\sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2} + \dots + \sigma_{n-1}^{2}}$$
$$\sigma_{n} = \sigma_{n-1} \sqrt{k^{2} - 1}$$

Search Range $\sigma_1 = 10.0$ $\sigma_2 = 11.0$ $\sigma_3 = 12.1$ $\sigma_4 = 13.3$ $\sigma_5 = 14.6$ $\sigma_6 = 16.1$ $\sigma_7 = 17.7$ $\sigma_8 = 19.5$ $\sigma_9 = 21.4$

The Shortcut:

$$\sigma_{n} = \sqrt{\sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2} + \dots + \sigma_{n-1}^{2}}$$
$$\sigma_{n} = \sigma_{n-1} \sqrt{k^{2} - 1}$$

 $\sigma_{3} = 5.0$ $\sigma_{4} = 5.5$ $\sigma_{5} = 6.1$ $\sigma_{6} = 6.7$ $\sigma_{7} = 7.4$ $\sigma_{8} = 8.1$

 $\sigma_9 = 8.9$

Cascaded Blurs $\sigma_1 = 10.0$ $\sigma_2 = 4.6$ $\sigma_3 = 5.0$ $\sigma_4 = 5.5$

The DoG Scale Space

The DoG Scale Space

DoG Picker Examples

Virus Like Particles

DoG Picker Examples

Virus Like Particles

Virus Like Particles

GroEL

GroEL

Ribosomes

Ribosomes

Thank You