Maximum-likelihood methods

Fred Sigworth, Andrew Barthel, Hemant Tagare
Yale University

Maximum Likelihood solves all problems.
3D reconstruction as an optimization problem

Given a stack of images \(X_i = \{X_1, X_2, ..., X_N\} \) find the best “model”, that is the set of reconstructions and other parameters \(\Theta = \{R_1, R_2, ..., R_M, a_1, a_2, ..., a_m, \sigma\} \).

What criterion should be used for the “best”?

How about maximizing the probability of the reconstructions given the data,

\[
P(\Theta | X).
\]

\(P(\Theta | X) \) is difficult to compute...or define...

However, we can compute \(P(X | \Theta) \).

define the likelihood as a function of \(\Theta \)

\[
\text{Lik}(\Theta) = P(X | \Theta)
\]
MLE and MAP Estimation

The probability of the model is related to the likelihood by Bayes' theorem,
\[p(\Theta | x) = p(x | \Theta) \frac{p(\Theta)}{p(x)} \]

The maximum-likelihood estimate (MLE) optimizes \(p(x | \Theta) \).

The maximum a posteriori estimate (MAP) optimizes \(p(x | \Theta)p(\Theta) \).

MLE Example 1: Gaussian random numbers

\[\text{Lik} = \epsilon f(x_1) \cdot \epsilon f(x_2) \cdot \ldots \cdot \epsilon f(x_N) \]

where \(\epsilon \) is the measurement resolution and the pdf is
\[f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{(x - \mu)^2}{2\sigma^2} \right). \]
MLE Example 1: Gaussian random numbers

\[L = N \ln(\epsilon) - \frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (x_i - \mu)^2 \]

To maximize \(L \) we set the derivatives to zero,

\[\frac{\partial L}{\partial \mu} = 0 \Rightarrow \hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i \]

\[\frac{\partial L}{\partial \sigma} = 0 \Rightarrow \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 \]

In this case the MLE is equal to the least-squares estimate.

Example 2: Mixture of Gaussians

\[f(x) = a_1 f_1(x) + a_2 f_2(x), \quad f_j(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x - \mu_j)^2}{2\sigma^2}\right) \]

\[L = -\frac{N}{2} \ln(2\pi\sigma^2) - \sum_{i=1}^{N} \left[a_1 \exp\left(\frac{-(x - \mu_1)^2}{2\sigma^2}\right) + a_2 \exp\left(\frac{-(x - \mu_2)^2}{2\sigma^2}\right) \right] \]

Taking the derivatives of \(L \) is not going to be easy. How to maximize it?
Example 2: Mixture of Gaussians

Suppose we had extra information in the form of "switch variables" \(z_i \). Then estimating the two mean values and the weights would be really easy:

\[
\begin{align*}
\hat{\mu}_1 &= \frac{\sum z_i x_i}{\sum z_i} \\
\hat{\mu}_2 &= \frac{\sum (1-z_i)x_i}{\sum (1-z_i)} \\
\hat{a}_i &= \frac{1}{N} \sum z_i \\
\hat{a}_2 &= \frac{1}{N} \sum (1-z_i)
\end{align*}
\]

The EM algorithm

Given estimates of the unknown model variables \(\mu_1, \mu_2, a_1 \) and \(a_2 \), compute expectation values of the \(z \)'s:

\[
\hat{z}_i = \frac{a_1 f_1(x_i)}{a_1 f_1(x_i) + a_2 f_2(x_i)} \\
\hat{z}_2 = \frac{a_2 f_2(x_i)}{a_1 f_1(x_i) + a_2 f_2(x_i)}
\]

Use these instead of the true \(z \)'s!
The general problem is formulated this way.

\[x = \{x_1, x_2 \ldots x_N\} \] is the set of observed data;
\[z = \{z_1, z_2 \ldots z_M\} \] is a set of hidden variables.

Suppose it's easy to compute the probability \(p(x, z \mid \Theta) \) of the complete data set \(\{x_1, x_2 \ldots x_N, z_1, z_2 \ldots z_M\} \).

By doing an integral over all values of the z's we can get the log likelihood:

\[
L = \ln \int p(x, z \mid \Theta) p(z \mid x, \Theta) \, dz
\]
Our Problem

\[x = \{x_1, x_2, \ldots x_N\} \text{ is the set of images;} \]
\[z = \{z_1, z_2, \ldots z_M\} \text{ is the set of alignment parameters (Euler angles and translations) for each image.} \]

It is easy to compute the probability \(p(x, z \mid \Theta) \) of the images, with the alignment parameters known.

In the end we don’t care about the alignment parameters, and just integrate them out:

\[L = \ln \int p(x, z \mid \Theta) p(z \mid x, \Theta) \, dz \]

The EM Algorithm

One way to increase the likelihood is to use the Expectation Maximization algorithm, which has two conceptual steps.

1. Given a previous estimate of the model parameters \(\Theta^{(\text{old})} \), compute the expectation

\[Q(\Theta) = \int \ln p(x, z \mid \Theta) p(z \mid x, \Theta^{(\text{old})}) \, dz \]

2. Maximize each parameter of the model by solving

\[\frac{\partial Q(\Theta^{(\text{new})})}{\partial \Theta} = 0 \]
\(p(x, z | \Theta) \) is easy to compute??

Assuming independent Gaussian noise in each of \(P \) pixels in an image, the probability for one image is

\[
p(x_i, \phi_i, \kappa_i | \Theta) = \left(\frac{e}{\sqrt{2\pi\sigma}} \right)^P \exp \left(-\frac{\|x_i - R_{\phi_i}(V_\kappa)\|^2}{2\sigma^2} \right)
\]

where

- \(x_i \) is the image
- \(\phi_i, \kappa_i \) are the corresponding hidden parameters (alignment, conformation)
- \(R_{\phi_i} \) is the projection operator
- \(V_\kappa \) is the \(k \)th reconstruction volume (an element of \(\Theta \))

The other quantity we need for the EM algorithm is the probability of the hidden variables

\[
p(\phi, \kappa | x_i, \Theta) = \frac{p(x_i, \phi, \kappa | \Theta)}{\sum_{\kappa} p(x_i, \phi, \kappa | \Theta) d\phi}
\]

ML 3D Reconstruction

ML 3D reconstruction reduces to this problem:

Maximize the quantity (I've left out some constants)

\[
Q = \sum_{i=1}^{N} \sum_{\kappa} \left[\int \|x_i - R_{\phi_i}(V_\kappa)\|^2 p(x_i, \phi, \kappa | \Theta^{(old)}) d\phi \right] \left/ \sum_{\kappa} \int p(x_i, \phi, \kappa | \Theta^{(old)}) d\phi \right.
\]

\(Q \) is maximized with respect to each voxel of each reconstructed volume, plus a few other parameters (e.g. \(\sigma \)). The maximization was done using an algebraic reconstruction technique by Scheres, Carazo et al.

Notice that both the numerator and denominator involve an integral over all five alignment parameters and a sum over the conformations.
Example 3: 1D alignment

Suppose we have many instances x_i of a 1D signal buried in noise, and its relative time of arrival is z_i. Can we reconstruct it?

In this case $\Theta = y$ is the reconstructed signal and the Q function is

$$Q(y) = \sum_i \sum_z |x_i - T_z y^T| p(z | x_i, y^{\text{old}})$$

and the EM iteration is

$$y^{(n+1)} = \sum_i \sum_z T_z x_i p(z | x_i, y^{\text{old}})$$

with the “switch variable” probability

$$p(z | x, y) = \frac{\exp \left(\frac{T_z x - y}{2\sigma^2} \right)}{\sum_z \exp \left(\frac{T_z x - y}{2\sigma^2} \right)}$$

![Example 3: 1D alignment](image)
Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization

Many tasks in the living cell are performed by macromolecular machines. Although three-dimensional electron microscopy (3D-EM) permits structural characterization of macromolecular ensembles in distinct functional states, the inability to classify projections from structurally heterogeneous samples has severely limited its application. We present a maximum likelihood–based classification method that does not depend on prior knowledge about the structural variability, and demonstrate its effectiveness for two macromolecular ensembles with different types of conformational variability: the Escherichia coli ribosome and Simian virus 40 (SV40) large T-antigen.

Many tasks in the living cell are performed by macromolecular machines encompassing various binding interactions and accompanied by conformational changes. The 3D-EM approach holds the promise of being able to visualize these “molecular machines” in their various functional states. In the single-particle reconstruction of existing classes, which determines the choice of the value for prior knowledge about the structural variability, and the high levels of noise that are strongly intertwined, and the high levels of noise that are strongly intertwined, and the high levels of noise that are strongly intertwined, and the high levels of noise that are strongly intertwined.

Because it involves integration over all five degrees of freedom, ML reconstruction is extremely computation-intensive. Involved in the ribosome reconstruction of Scheres et al. (2007):

- 90,000 64 x 64 pixel images
- 10 degree steps
- No CTF correction
- 4 volumes reconstructed
- 18 CPU-days per iteration (full integration)
- 6 CPU-months total

A new paper (Oct. 2007) describes ML reconstruction with CTF correction and a model including nonwhite noise. This algorithm runs somewhat more slowly, but performs better.
Why do we expect so much from MLE?

This is easiest to explain in the 2D case. The iteration to improve a 2D reconstruction (like a class average) is computed as

\[
A = \sum_{i=1}^{N} \int \frac{T_{i}(x_{i}) p(\phi \mid x_{i}, \Theta^{(k)}) d\phi}{p(\phi \mid x_{i}, \Theta^{(k)}) d\phi}
\]

where

\[
p(\phi \mid x_{i}, \Theta) = \left(\frac{e}{\sqrt{2\pi \sigma}} \right)^{x_{i}} \exp \left(-\frac{\|x_{i} - T_{\phi}(A)\|^2}{2\sigma^2} \right)
\]

\[= \text{const} \times \exp \left(\frac{x_{i} \cdot T_{\phi}(A)}{\sigma} \right)
\]

Thus the average image A is obtained as a weighted average of transformed data images, with the weights being an exponential function of the cross-correlation.

Why do we expect so much from MLE?

This means that in situations where, at low SNR, conventional alignment shows reference bias...

![Diagram](image.png)
Why do we expect so much from MLE?

ML estimation shows much less reference bias. This comes from the fact that hard assignments of alignment parameters are not made.

Speeding up the 2D EM algorithm

Finite Mixture: \(p(I \mid \mu, \alpha, \sigma) = \sum_{j=1}^{M} \alpha_j \int p_g(T_{-t}(I) \mid \mu_j, \sigma)p(\tau)d\tau, \)

where,

- \(I \) is the image,
- \(M \) is the number of components,
- \(p_g \) is a normal distribution with mean \(u_j \), std. \(\sigma \), \(\mu = \{\mu_j\} \).
- \(\alpha_j \) is the component weight, \(\alpha = \{\alpha_j\} \).
- \(\tau \) are transformation parameters (1 rot.+2 trans.) distributed as \(p(\tau) \).

Max. Likelihood: \(\mu, \alpha, \sigma = \arg \max \sum_{i=1}^{N} \log p(I_i \mid \mu, \alpha, \sigma). \)
Observations

EM Loop:

\[p(y_i, \tau \mid I_i, \{\mu, \alpha, \sigma\}^{[n]}) = \frac{\alpha_{y_i}^{[n]} p_g(T_{-\tau}(I_i \mid \mu_{y_i}, \sigma))}{\sum_{j=1}^{M} \alpha_j \int p_g(T_{-\tau}(I_i) \mid \mu_j, \sigma) d\tau}, \]

\[\mu_{j}^{[n+1]} = \frac{\sum_{i=1}^{N} T_{-\tau_i}(I_i) p(y_i = j, \tau_i \mid I_i, \{\mu, \alpha\}^{[n]}, \sigma) d\tau_i}{\sum_{i=1}^{N} p(y_i = j, \tau_i \mid I_i, \{\mu, \alpha\}^{[n]}, \sigma) d\tau_i}. \]

Note:

1. All integrals on 3-d space (1 rot. + 2 trans.)

2. Integral in first equation can be evaluated on a coarse grid. Only a few grid points contribute.

3. Integral in the second equation needs a fine grid.

Adaptive Integration

1. Do the first integral over a coarse grid (20 deg., 2pix., 2pix.)

2. Interpolate log \(p \) (the correlation function).

3. Identify the largest grid elements contributing to 99.99% of the integral.

4. Do the last integral on a fine grid over these elements.
First results of adaptive integration

SNR = -17db

Projections from random directions in 5 deg. cones around x,y,z axis

24 images/mean

10 EM iterations

Speed gain: X 20~30

Fourier shell energy indistinguishable from exact EM.

Extensions are limited only by the imagination

...and computation time!

The likelihood framework allows much flexibility in defining models.

For example, a hidden variable could be the angle of a rigid-body motion. The model would contain parameters say for the mean angle and its S.D. of random variation. The EM algorithm can handle this, and in principle can provide a “sharp” structure, along with a description of the motion.

\[x = \{ x_1, x_2, ... x_N \} \] is the set of images;

\[z = \{ z_1, z_2, ... z_M \} \] is the set of alignment parameters (Euler angles and translations) for each image.
Concluding remarks

1. Everything gets harder at low SNR or high ambiguity: EM convergence is slower, and the quality of the noise model becomes more important.

2. The EM algorithm is guaranteed only to find a local maximum.

3. MLE is asymptotically optimal: in the limit of infinite data it should provide correct estimates even with low-quality data. However, the required amount of data grows very rapidly as SNR decreases.

4. MLE does not solve all problems.

Thanks to

Andrew Barthel (Biomedical Engineering)
Hemant Tagare (EE and Diagnostic Radiology)
Yale University
data weighted by z