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Maximum Likelihood solves all problems.
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3D reconstruction as an optimization problem

Given a stack of images X, ={X,.X,,..X, } find the best
“‘model”, that is the set of reconstructions and other
parameters © ={R.R,...R, ,a,,a,..a,,0}.

What criterion should be used for the “best?”

How about maximizing the probability of the reconstructions
given the data,

POI1X).

P(©®1X) is difficult to compute...or define...
However, we can compute P(X |0).

define the likelihood as a function of@

Lik(®)= P(X | ©)




MLE and MAP Estimation

The probability of the model is related to the likelihood by Bayes’ theorem,

p©1%) = px1©) 22

p(x)
The maximum-likelihood estimate (MLE) optimizes p(x10).

Experiment—06

The maximum a posteriori estimate (MAP) optimizes p(x|10)p(0).

p(©)— Experiment—©

a priori a posteriori

MLE Example |: Gaussian random numbers

Lik = £f(x,)- £(x,) o €/ (xy) S
where ¢ is the measurement resolution and the pdf is zziz
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MLE Example |: Gaussian random numbers
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In this case the MLE is equal to the least-squares estimate. .|

Example 2: Mixture of Gaussians
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Taking the derivatives of L is not going to be easy. How to maximize it? 2.9938
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Example 2: Mixture of Gaussians

Suppose we had extra information in the form of “switch variables” z,. Then
estimating the two mean values and the weights would be really easy:

z X z (I-z)x

M= /X,Zi My, = 2(1_21')

1 1
a =NZZ,- a2=NZ(1—Zi)
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Example 2: Mixture of Gaussians

The EM algorithm

Given estimates of the unknown model variables u,,u,,a,and a,,
compute expectation values of the z’s:

2. — a]fi(x,‘) 5 — a2f2(xi)
"afi(x)+ayf(x) Poafi(x)+ayfy(x)

Use these instead of the true z’s!

B

0.9863 0.8236
2.9980 0.0111
1.8384 0.2660
0.2488 0.9771
1.6752 0.3716
2.6736 0.0287
2.0572 0.1582
2.6596 0.0299
3.6584 0.0015
2.4223 0.0591
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Likelihood with hidden variables

The general problem is formulated this way.

x ={x,,x,..x, } is the set of observed data;

z={z,,2,,..z, | is a set of hidden variables.

Suppose it's easy to compute the probability p(x,z|®) of the complete data

set {x,,%,..0,2,2,.2y | -

By doing an integral over all values of the z's we can get the log likelihood:

L=In Jp(x,z 10) p(z1x,0) dz




Our Problem

x ={x,,x,..x, } is the set of images;
Z= {zl ,zz,...zM} is the set of alignment parameters (Euler angles and
translations) for each image.

It is easy to compute the probability p(x,z|0) of the images, with the
alignment parameters known.

In the end we don’t care about the alignment parameters, and just integrate
them out:

L= ln_[p(x,z 10) p(z1x,0) dz

The EM Algorithm

One way to increase the likelihood is to use the Expectation Maximization
algorithm, which has two conceptual steps.

1. Given a previous estimate of the model parameters LY,
compute the expectation

0(0) = jln p(x,210)p(z1x,0°9)dz
2. Maximize each parameter of the model by solving
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p(x,z10)is easy to compute??

Assuming independent Gaussian noise in each of P pixels in an image, the
probability for one image is

2

P
€ ||‘x[_R(p (VK')
0.k, 10)=| ——— N i A
p(x;.9,,x,10) ( '_szj exp 767

where

x; is the image
@, .k, are the corresponding hidden parameters (alignment, conformation)

R(p is the projection operator

V. is the K™ reconstruction volume (an element of ©)

The other quantity we need for the EM algorithm is the probability of the
hidden variables

p(x,,0.x10)

p(¢,K‘ | X; ’9) =
Y[ px gk 10)dp

ML 3D Reconstruction

ML 3D reconstruction reduces to this problem:

Maximize the quantity (I've left out some constants)

o 2R, )
o= 2{ Y [ p(x.0.610C)dg

* p(x, 0,610 )

Q is maximized with respect to each voxel of each reconstructed volume,
plus a few other parameters (e.g. o). The maximization was done using an
algebraic reconstruction technique by Scheres, Carazo et al.

Notice that both the numerator and denominator involve an integral over all
five alignment parameters and a sum over the conformations.




Example 3: I D alighment

Suppose we have many instances x; of a 1D signal buried in noise, and its
relative time of arrival is z. Can we reconstruct it?

In this case ©=y is the reconstructed signal and the Q function is
2
0 =2 %~ Ty Pzl x.5")
and the EM iteration is

y(new) - ZZszip(Z I X, ’y(old))
i z

with the “switch variable” probability

p(zlx,y)=

Tx—
;exp[ll ;fczyllj

Example 3: I D alignment
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ML 3D Reconstruction
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S optimization Because it involves mtegratlpn over all five degree§ of
freedom, ML reconstruction is extremely computation-
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the Escherichia coli ribosome and Simian virus 40 (SV40)
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Many tasks in the living cell are performed by macromolecular
ssemblies encompassing various binding interactions and accom- 18 CPU-days per iteration (full integ ration)
panied by conformational changes. The 3D-EM approach holds the
promise of being able to visualize these ‘molecular machines’ in

their various functional states. In the single-particle reconstruction 6 CPU'mOnthS total

ML 3D Reconstruction

Structure

A new paper (Oct. 2007) describes
ML reconstruction with CTF
correction and a model including
nonwhite noise. This algorithm runs
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SUMMARY However, as aresult of alow contrast between m

ecules and the surrounding ice, and because of
The coexistence of multiple distinct structural electron dose to avoid radiation damage, cryo-
states often obstructs the application of three- typically suffer from great amounts of noise (wit
dimensional cryo-electron microscopy to large to-noise ratios of the order of ~0.1). Moreove
macromolecular complexes. Maximum likeli- particles adopt random orientations on the exp:

support, the particles need to be aligned prior to &
struction. The problems of particle alignment anc
cation are strongly intertwined, and the high level:

hood approaches are emerging as robust tools
for solving the image classification problems
that are poslel:! by such samples. Here, we pro- complicate their unraveling. Therefore, to date
pose a statistical data model that allows for a molecules or molecules with nonstoichiometr
description of the experimental image formation binding still pose major challenges to the 3D
within the formulation of 2D and 3D maximum- proach, and the developments of new alignment
likelihood refinement. The proposed approach sification algorithms continue to play a crucial r




Why do we expect so much from MLE?

This is easiest to explain in the 2D case. The iteration to improve a 2D reconstruction
(like a class average) is computed as

T ,(x)p(91x,,0"")d¢
T [p(01%,09)de

i
where

2
fof ezt

20

X, T, (A)
=const Xexp T

Thus the average image A is obtained as a weighted average of transformed data images,
with the weights being an exponential function of the cross-correlation.

€
Ix,0)=| —
p(¢x, ) (\/EO'

Why do we expect so much from MLE?

This means that in situations where, at low SNR, conventional alignment shows

reference bias...
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Why do we expect so much from MLE?

...ML estimation shows much less reference bias. This comes from the fact that hard
assignments of alignment parameters are not made.
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Speeding up the 2D EM algorithm

Finite Mixture: p(I | p,a,0) =

where,
I is the image,

M-

1

J

M is the number of components,

Py is a normal distribution with mean w;, std. o, p = {y;}.

a; is the component weight, a = {a;}
T are transformation parameters (1 rot.42 trans.) distributed as p(7).

Max. Likelihood: u,a,0 = arg maleogp(Ii | p,a,0).

a5 [ py(T-i(D) ] s )plr)ar

N

=1

H. Tagare




Observations

EM Loop:
a?[J?:]pg(T—T(Ii | Hy; s U))

p(yi:T | Ii’{uva’a-}[n]) =

M M
Zj:l aj [ pg(T—+(Li) | prj, 0)dr
N[,nﬁ-l] — Zivzl fT—Ti(Ii)p(yi = ja Ti | Iia {N’ a}[n]’a)dTi
’ SN oty = 4,7 | L {p, o}, o)dr;

Note:
1. All integrals on 3-d space (1 rot. + 2 trans.)

2. Integral in first equation can be evaluated on a coarse grid. Only a few
grid points contribute.

3. Integral in the second equation needs a fine grid.

Adaptive Integration

1. Do the first integral over a coarse grid (20 deg., 2pix., 2pix.)

2. Interpolate logp (the correlation function).

w

. Identify the largest grid elements contributing to 99.99% of the integral.

=~

. Do the last integral on a fine grid over these elements.




First results of adaptive integration

SNR=-17db

Projections from random directions
in 5 deg. cones around Xx,y,z axis

24 images/mean

10 EM iterations
Speed gain: X 20~30

Fourier shell energy indistinguishable from exact EM.

Extensions are limited only by the imagination

/ ...and computation time!

The likelihood framework allows much flexibility
in defining models.

For example, a hidden variable could be the
angle of a rigid-body motion. The model would
contain parameters say for the mean angle and
its S.D. of random variation. The EM algorithm

/\ can handle this, and in principle can provide a
L \ “sharp” structure, along with a description of the

[ ' motion.

X= {xl,xz..xN} is the set of images;
z= {zl,zz,..zM} is the set of alignment parameters (Euler angles and
translations) for each image.




Concluding remarks

|. Everything gets harder at low SNR or high ambiguity: EM convergence is
slower; and the quality of the noise model becomes more important.

2. The EM algorithm is guaranteed only to find a local maximum.

3. MLE is asymptotically optimal: in the limit of infinite data it should
provide correct estimates even with low-quality data. However, the
required amount of data grows very rapidly as SNR decreases.

4. MLE does not solve all problems.

Thanks to

Andrew Barthel (Biomedical Engineering)
Hemant Tagare (EE and Diagnostic Radiology)
Yale University
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