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Maximum Likelihood solves all problems.
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method works, let us consider a simple sin-
gle-molecule experiment. Suppose that from 
repeated measurements xi of the position of 
the lever arm of a motor protein, we wish to 
determine the true positions (µ1, µ2 and µ3) 
of the motor arm in each of three confor-
mations. Assuming a three-gaussian model, 
we could make a least-squares fit to the his-
togram of the observations (Fig. 1a). There 
are, however, better ways to estimate the true 
positions.

Let us call M the set of the model param-
eters (the µ’s) that we wish to estimate, and 
X the set of all the observations xi. The 
likelihood is a function of M, defined as 
L(M) = P(X | M).

In other words, the likelihood is the prob-
ability of observing the set of data given the 
particular model parameters. To obtain the 
maximum-likelihood estimate, we vary the 
elements of M to maximize L. In general, 
this is a nonlinear optimization problem 
and is not easy to do.

Now suppose that corresponding to 
each measurement xi, we have access to a 
variable yi which would take the value of 
1, 2 or 3. This additional variable speci-
fies which of the three conformations the 
motor protein was in at the time of the 
measurement. Given this extra informa-
tion, the maximum-likelihood estimates 
of the µ values would be obtained very 
simply, by taking the mean values of the 
measurements corresponding to each 
conformation. The idea of exploiting such 

‘hidden variables’ is the key to the expecta-
tion-maximization algorithm.

Starting with an initial guess for the µ val-
ues, the ‘expectation’ step of the expectation-
maximization algorithm provides fuzzy esti-
mates for the y variables. Specifically, given 
each xi, the algorithm calculates the prob-
abilities that yi would take the values of 1, 2 
or 3. In the ‘maximization’ step, this infor-
mation about the y values is used to obtain 
new estimates of the µ valuessimply by 
taking weighted averages of the xi values. 
The expectation-maximization process is 
iterated until the µ values converge, at which 
point they are the true maximum-likelihood 
solutions to the original problem.

This process is used by Scheres et al. to 
‘disentangle’ data obtained from images of 
multiple populations of macromolecules 
without any prior knowledge of structural 
variability. Individual ribosome images 
(Fig. 1b) are so noisy that it is impossible 
to classify them as belonging to one con-
formation or the other. Yet the different 
underlying structures emerge through 
iterations of the expectation-maximiza-
tion algorithm.

This disentangling of conformations 
works well only because Scheres et al. have 
used maximum-likelihood estimation in 
the entire single-particle reconstruction 
process. Maximum-likelihood reconstruc-
tion has been done before, by Doerschuk 
and colleagues4, for particles of high sym-
metry, but Scheres et al. are the first to

demonstrate  maximum-l ike l ihood 
reconstruction of  particlessuch as 
ribosomesthat have no symmetry. Using 
the expectation-maximization algorithm, 
they maximized the likelihood with respect 
to ~106 µ variables, namely the scattering 
density value at each voxel of the recon-
structed volumes. These were estimated 
in 25 expectation-maximization iterations 
from 4 × 108 measurements—the number 
of pixels in the 105 images of the ribosome 
data set. For each of the images, the itera-
tion involved integrations over six hidden 
variables. These variables included not only 
the conformation of a ribosome but also its 
orientation and position in each image. The 
computational effort, using some 4,000 
CPU hours on a computer cluster, is per-
haps the most audacious application of the 
expectation-maximization algorithm ever 
performed. It also showcases an extremely 
powerful new tool for structural biology.

Conformational heterogeneity has been 
a persistent problem in single-particle 
cryo-EM studies. Reconstruction from 
heterogeneous data sets stalls at a low 
resolution because the mobile parts of 
the structure appear blurred. With careful 
‘supervised classification’ of images inves-
tigators have been able to tease apart the 
conformational variants in a few cases5. A 
recent advance is a new method for col-
lecting data, the ‘orthogonal tilt’ imaging 
strategy6, that simplifies classification. And 
now there is the algorithm of Scheres et 
al., which appears to handle with aplomb 
the heterogeneity in conventional data 
sets. It may simplify the study of the many 
important macromolecular complexes 
that do not have consistent stoichiom-
etries, such as the postsynaptic densities 
of neurons. It may also make possible the 
direct structural study of various molecu-
lar machines, trapped in the midst of their 
reaction cycles.
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Figure 1 | Maximum likelihood applied to ‘finite mixture’ problems. (a) Estimation of three mean values 
from overlapping distributions of measured values. (b) Estimation of two ribosome structures from a 
large set of noisy projection images.
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   3D reconstruction as an optimization problem

Given a stack of images                  find the best 
“model”, that is the set of  reconstructions and other 
parameters

What criterion should be used for the “best?”

How about maximizing the probability of the reconstructions 
given the data,

                                                       .

  

Xi = X1,X2 ,...XN{ }

Θ = R1,R2 ,...RM ,a1,a2 ...am ,σ{ }.

P(Θ |X)

                   is difficult to compute...or define...

However, we can compute                 .             

define the likelihood as a function of 

P(Θ |X)

P(X |Θ)

Lik(Θ) = P(X |Θ)

Θ



MLE and MAP Estimation

The probability of the model is related to the likelihood by Bayes’ theorem, 

 

p(! | x) = p(x |!) p(!)
p(x)

 

 

The maximum-likelihood estimate (MLE) optimizes p(x |!) . 
 

 

The maximum a posteriori estimate (MAP) optimizes p(x |!)p(!) .

Experiment Θ

The probability of the model is related to the likelihood by Bayes’ theorem, 

 

p(! | x) = p(x |!) p(!)
p(x)

 

 

The maximum-likelihood estimate (MLE) optimizes p(x |!) . 
 

 

The maximum a posteriori estimate (MAP) optimizes p(x |!)p(!) .

Experiment Θp(Θ)
a priori a posteriori

MLE Example 1: Gaussian random numbers
Example 1: Gaussian-distributed random numbers 
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In this case the MLE is equal to the least-squares estimate. 
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In this case the MLE is equal to the least-squares estimate. 

Example 2: Mixture of Gaussians

X Z Z’
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Example 2.  Mixture of two Gaussians 
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Taking the derivatives of L is not going to be easy.  How to maximize it? 

 

 
 

Suppose we had extra information in the form of “switch variables” z
i
.  Then estimating 

the two mean values and the weights would be really easy: 
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The EM algorithm 
 

Given estimates of the unknown model variables µ
1
,µ

2
,a
1
and a

2
, compute expectation 

values of the z ’s: 
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X Z Z’
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Example 2.  Mixture of two Gaussians 
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Taking the derivatives of L is not going to be easy.  How to maximize it? 

 

 
 

Suppose we had extra information in the form of “switch variables” z
i
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estimating the two mean values and the weights would be really easy: 
 

µ̂
1
=

z
i
x
i

i

!

z
i

i

!
                 µ̂

2
=

(1" z
i
)x

i

i

!

(1" z
i
)

i

!
  

a
1
=

1

N
z
i

i

!                 a
2
=

1

N
(1" z

i
)

i

!  

 

 

The EM algorithm 
 

Given estimates of the unknown model variables µ
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expectation values of the z ’s: 
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Taking the derivatives of L is not going to be easy.  How to maximize it? 
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The EM algorithm 
 

Given estimates of the unknown model variables µ
1
,µ
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,a
1
and a

2
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compute expectation values of the z ’s: 
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Use these instead of the true z ’s! 



Example 2: Mixture of Gaussians
1 iteration 2 iterations 25 iterations

z 1-z

data weighted by z

Likelihood with hidden variables
The EM algorithm 

 
The general problem is formulated this way. 

 

x = x1, x2 ...xN{ }  is the set of observed data; 

z = z
1
, z
2
,...z

M{ }  is a set of hidden variables. 

  

Suppose it’s easy to compute the probability p(x,z |!)  of the complete data 
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By doing an integral over all values of the z’s we can get the log likelihood: 

 

L = ln p(x,z |!)"  p(z | x,!) dz  

 
 

Our problem 

 

x = x
1
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2
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N{ }  is the set of images; 

z = z1, z2 ,...zM{ }  is the set of alignment parameters (Euler angles and 

translations) for each image. 
  

It is easy to compute the probability p(x,z |!)  of the images, with the 

alignment parameters known. 

 
In the end we don’t care about the alignment parameters, and just integrate 

them out: 

 

L = ln p(x,z |!)"  p(z | x,!) dz  

 

 

One way to increase the likelihood is to use the Expectation Maximization 
algorithm, which has two conceptual steps. 

 

1.  Given a previous estimate of the model parameters !(old)
, 

compute the expectation 

 

Q(!) = ln p(x,z |!)p(z | x,!(old)

" )dz  

 
2.  Maximize each parameter of the model by solving 
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)

!L
= 0  
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 is the image 
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 are the corresponding hidden parameters (alignment, conformation)  

R!  is the projection operator 

V
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 is the kth reconstruction volume (an element of ! ) 

 

The other quantity we need for the EM algorithm is the probability of the 
hidden variables 
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ML 3D reconstruction reduces to this problem: 

 

Maximize the quantity (I’ve left out some constants) 
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Q is maximized with respect to each voxel of each reconstructed volume, 
plus a few other parameters (e.g. ! ).  The maximization was done using an 

algebraic reconstruction technique by Scheres, Carazo et al. 
 

Notice that both the numerator and denominator involve an integral over all 

five alignment parameters and a sum over the conformations. 
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Example 3: 1D alignment

Suppose we have many instances xi of a 1D signal buried in noise, and its 
relative time of arrival is zi.  Can we reconstruct it? 
 
In this case !=y is the reconstructed signal and the Q function is 
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Example 3: 1D alignment



ML 3D Reconstruction

Because it involves integration over all five degrees of 
freedom, ML reconstruction is extremely computation-
intensive.  Involved in the ribosome reconstruction of 
Scheres et. al. (2007):

90,000 64 x 64 pixel images

10 degree steps

No CTF correction

4 volumes reconstructed

18 CPU-days per iteration (full integration)

6 CPU-months total

Disentangling
conformational states
of macromolecules in
3D-EM through likelihood
optimization
Sjors H W Scheres1, Haixiao Gao2, Mikel Valle1,5,
Gabor T Herman3, Paul P B Eggermont4,
Joachim Frank2 & Jose-Maria Carazo1

Although three-dimensional electron microscopy (3D-EM)
permits structural characterization of macromolecular
assemblies in distinct functional states, the inability to classify
projections from structurally heterogeneous samples has
severely limited its application. We present a maximum
likelihood–based classification method that does not depend
on prior knowledge about the structural variability, and
demonstrate its effectiveness for two macromolecular
assemblies with different types of conformational variability:
the Escherichia coli ribosome and Simian virus 40 (SV40)
large T-antigen.

Many tasks in the living cell are performed by macromolecular
assemblies encompassing various binding interactions and accom-
panied by conformational changes. The 3D-EM approach holds the
promise of being able to visualize these ‘molecular machines’ in
their various functional states. In the single-particle reconstruction
approach (see ref. 1), individual molecules are visualized with an
electronmicroscope, and the resulting projections—often number-
ing tens of thousands—are combined in a three-dimensional
density map. As the technique imposes no restrictions on the
range of existing conformations in the sample, information about
various functional states is often available in a single experiment.
However, the combination of images in a three-dimensional
reconstruction requires that they represent projections of identical
three-dimensional objects and that their relative orientations be
known. As the problems of conformational and orientational
classification are strongly intertwined, the coexistence of different
conformations or ligand binding states in the sample has seriously
limited the applicability of the 3D-EM approach2.

Several strategies have been proposed for classification of hetero-
geneous projection data. The most potent one may be supervised
classification (for example, as applied in refs. 3,4), which requires
prior structural knowledge about the sample heterogeneity to
separate the data according to their similarity to two or more
known reference structures. Here the dependency on a priori
available information seriously limits the general applicability of
this approach. The same can be said about approaches in which the
conformational variability of a molecule is predicted by normal-
mode analysis from an existing density map5. Most other methods
use recursive schemes of two-dimensional classification and three-
dimensional reconstruction, in which orientational and class mem-
bership assignment are alternated (see ref. 1 and references therein).
However, as these approaches typically rely on many strategic
judgments, their effectiveness is difficult to predict generally.
Here we propose a classification approach based on maximum-

likelihood principles for handling structurally heterogeneous data.
This methodology has potentially wide applicability for mining
hidden information from biological data sets that are (i) very large
(in one of the experiments that we report, the number of raw data
items was approximately 1,500 million), (ii) very noisy (the signal-
to-noise ratios of the data sets presented are in the order of 0.1), and
(iii) lack information on how the data items were generated (in our
case, for any projection, we have no prior information on the
associated conformation and orientation). From a theoretical point
of view, maximum-likelihood estimators are particularly well
suited for the problem at hand because, as the amount of experi-
mental data increases, these methods yield less biased results with
smaller variances than alternative estimators6. Furthermore, pre-
vious applications of the maximum-likelihood approach to related
problems in the 3D-EM field have demonstrated its particular
robustness to high levels of noise7–10.
The classification technique described here aims to find the most

likely set of parameters (Y) to construct a statistical model
describing structurally heterogeneous data, through optimization
of the following log-likelihood function:

LðYÞ ¼
XI

i¼1

ln
XK

k¼1

Z

j

PðXijk;j;YÞPðk;jjYÞdj;

where for each experimental projection Xi (i ¼ 1, y, I),
we calculate all probabilities P(Xi | k,j,Y) of observing Xi

given model Y, position j (that is, rotation and translation) and
class k (k ¼ 1, y, K), also taking the prior probability of k
and j, P(k,j |Y), into account. These probability calculations
are based on the assumption that all Xi are projections of one
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of K underlying three-dimensional objects, to which white, Gaus-
sian noise has been added. We use an expectation-maximization
algorithm11 to optimize the log-likelihood function, and show
that it is equivalent to a three-dimensional projection-matching
algorithm, where all experimental images are iteratively presented
to a discretely sampled library of projections ofK different reference
structures (for example, see ref. 12). The main difference from
conventional projection-matching protocols is that the discrete
assignments of projection orientation and class membership are
replaced by probability-weighted integrations over all possible
assignments. We describe the algorithm and its implementation
in the open-source package Xmipp13 in detail in the Supplemen-
tary Note online.
We show that this approach permits the use of initial reference

maps that are devoid of any prior information (or bias) about
the structural variability in the sample. Such bias-free seeds
are obtained by performing a single iteration of likelihood optimi-
zation for K randomly drawn subsets of the data, using a low-
resolution representation of the average structure as single
reference. Therefore, classification based on likelihood optimiza-
tion is unsupervised because it depends only on a preliminary
reconstruction of the data and a rough estimate for the number
of existing classes, which determines the choice of the value
of K. Taken together with the intrinsically combined treatment of
orientational and conformational assignment, this suggests that,
in contrast to existing approaches, classification by likelihood
optimization may be applicable to a broad range of structurally
heterogeneous data sets.
We tested the likelihood optimization methodology on two

highly challenging cryo-EMdata sets ofmacromolecular assemblies
exhibiting different types of structural variability. We obtained the
first data set from a sample of 70S E. coli ribosome particles in a
translocational state before GTP hydrolysis (H. Gao et al., unpub-
lished data; see SupplementaryMethodsonline) and it represents a
case of nonstoichiometric ligand binding. A preliminary recon-

struction at 9.9 Å from 91,114 projection images exhibited blurred
density for the 30S subunit and fragmented density owing to the
binding of elongation factor G (EF-G;B4% of the total mass of the
complex), indicating problems of structural heterogeneity (Sup-
plementary Fig. 1 online). The second data set, comprising 5,738
projection images of SV40 large T-antigen dodecamers (see Sup-
plementary Methods), represents a case of flexible domain move-
ment, as this complex was previously observed to exhibit curvature
of a varying degree along its central axis14.
For the ribosome data, we chose K ¼ 4 and performed 25

iterations of likelihood optimization using all particles (Supple-
mentary Fig. 2 online). The four resulting structures could be
interpreted in terms of two different conformations. Class 4,
comprising only 16% of the particles, clearly represents the ribo-
some in a ratcheted conformation (that is, the 30S subunit has
rotated counter-clockwise relative to the 50S subunit15) with bound
EF-G and a single tRNA positioned at the hybrid P/E site (ML-4;
Fig. 1a). In contrast, the structures obtained from classes 1–3
represent the ribosome without ratcheting and without EF-G, but
with three bound tRNAs at the A, P, and E sites (ML-1, ML-2, ML-
3; Fig. 1a). (The occupancy of the E site is attributed to free
deacylated tRNA that has high affinity for the ribosomal E site15.)
Slight overall rotations of the entire map are responsible for the
main differences among classes 1–3. These results are in excellent
agreement with those obtained by supervised classification into five
subsets (Fig. 1b,c). Based on the assumption that the heterogeneity
in the data entailed a ratchet motion, the supervised approach
(Supplementary Fig. 3 online) also yielded classes representing
either ribosomes without ratcheting, lacking EF-G and with three
tRNAs bound, or ratcheted ribosomes in complex with EF-G and a
single tRNA. However, the unimodal character of the supervised
classification histogram, which served to divide the data set, and
the observed partial density in the corresponding reconstructions,
suggest that the intermediate classes of this approach are
likely to represent mixtures of assemblies with different ratios of
both conformations. The lack of clear distinctions among the
different classes without the binding of EF-G, as well as the high
similarity of corresponding structures obtained using both
approaches, suggest the existence of only two genuinely different
classes in this data set. The high degree of structural overlap
between the EF-G–containing classes using both methods
(75% overlap in membership) validates the maximum-likelihood
approach to classification. In contrast to the supervised approach,
however, classification by likelihood optimization does not depend
on prior knowledge about the nature of the structural variability in
the data and may thus be applicable in situations where such
knowledge is unavailable.
The large T-antigen data set represents a continuous form of

structural variability, where a discrete number of classes cannot fully
describe the continuum of conformations, but may serve to capture
distinct representative states along the continuum. Consequently,
the choice of K results from a trade-off between the degree of
homogeneity desired within each class and the number of experi-
mental images needed on statistical grounds to achieve sufficiently
high resolution for its corresponding reconstruction. Because of
the limited number of experimental particles in this data set, we
chose K ¼ 3 and performed 20 iterations of likelihood optimization
(Supplementary Fig. 4 online). The resulting maps represent
dodecamers with different degrees of bending along their central
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Figure 1 | Comparison of supervised and maximum-likelihood classifications
for the ribosome data set. (a) Refined structures of the classes as determined
by maximum-likelihood optimization (ML). (b) Supervised-classification
histogram (SU, black) that served to divide the data set into five classes, and
the corresponding histograms for the classes as determined by maximum-
likelihood optimization (blue and red). (c) Refined structures of the classes as
determined by supervised classification. The two classification approaches
yielded similar structures, both in terms of overall quality (with resolutions in
the range of 12–14 Å) and in terms of their interpretation: unratcheted
ribosomes in complex with three tRNAs (orange, green, magenta) or ratcheted
ribosomes in complex with one tRNA (light-green) and EF-G (red). Classes
SU-5 and ML-4 overlap to a high extent, having 11,415 particles in common.
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ML 3D Reconstruction

Structure
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SUMMARY

The coexistence of multiple distinct structural
states often obstructs the application of three-
dimensional cryo-electron microscopy to large
macromolecular complexes. Maximum likeli-
hood approaches are emerging as robust tools
for solving the image classification problems
that are posed by such samples. Here, we pro-
pose a statistical data model that allows for a
descriptionof theexperimental image formation
within the formulation of 2D and 3D maximum-
likelihood refinement. The proposed approach
comprises a formulation of the probability cal-
culations in Fourier space, including a spatial
frequency-dependent noise model and a de-
scription of defocus-dependent imaging effects.
The Expectation-Maximization-like algorithms
presented are generally applicable to the align-
ment and classification of structurally hetero-
geneous projection data. Their effectiveness is
demonstrated with various examples, including
2D classification of top views of the archaeal
helicase MCM and 3D classification of 70S
E. coli ribosome and Simian Virus 40 large T-
antigen projections.

INTRODUCTION

Although over the past decades three-dimensional cryo-
electron microscopy (3D cryo-EM) has matured to be-
come a widely used technique for the visualization of large
macromolecular complexes, the coexistence of multiple
structural states still represents a major limiting factor for
its general applicability (Leschziner and Nogales, 2007;
Llorca, 2005). In contrast to biophysical techniques that
study ensembles of molecules in bulk, cryo-EM allows
visualization of individual particles. Thus, in principle, im-
age processing approaches capable of classifying distinct
structural states hold the promise of characterizing the
conformational spectra of macromolecular machines.

However, as a result of a low contrast betweenmacromol-
ecules and the surrounding ice, and because of a limited
electron dose to avoid radiation damage, cryo-EM data
typically suffer from great amounts of noise (with signal-
to-noise ratios of the order of !0.1). Moreover, as the
particles adopt random orientations on the experimental
support, the particles need to be aligned prior to 3D recon-
struction. The problems of particle alignment and classifi-
cation are strongly intertwined, and the high levels of noise
complicate their unraveling. Therefore, to date, flexible
molecules or molecules with nonstoichiometric ligand
binding still pose major challenges to the 3D-EM ap-
proach, and the developments of new alignment and clas-
sification algorithms continue to play a crucial role in the
advances of this dynamic field.
For many years, the problems of particle alignment and

classification have been addressed with methods that
did not explicitly take the characteristics of the abundant
experimental noise into account (see Frank, 2006 and ref-
erences therein). Early work on a statistical noise model
for 3D-EM data includes Provencher and Vogel (1988),
and in 1998, Sigworth introduced a maximum-likelihood
algorithm for 2D alignment of EM images (Sigworth,
1998). Similar principles were then also applied by Doer-
schuk and Johnson to the problem of 3D reconstruction
of icosahedral viruses (Doerschuk and Johnson, 2000;
Yin et al., 2003) and to image classification by quantitative
self-organizing maps (Pascual-Montano et al., 2001). Re-
cently, we applied the ML approach to the problem of
combined alignment and classification of structurally
heterogeneous projection data, both for 2D averaging
(Scheres et al., 2005b) and for 3D reconstruction (Scheres
et al., 2007). These contributions have shown that the ML
approach is relatively robust to high levels of noise, and
may be particularly suited for the image-processing chal-
lenges posed by 3D-EM.
The maximum likelihood approach appears to be well

suited to make full use of the proposed data model for
3D-EM. In addition, 3D reconstruction of structurally het-
erogeneous EM data may be viewed as an incomplete
data problem (i.e., with missing data), because the relative
orientations and particle classes of the individual particles
are not directly observed. This leads in a natural way
to an Expectation-Maximization algorithm for likelihood
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A new paper (Oct. 2007) describes 
ML reconstruction with CTF 
correction and a model including 
nonwhite noise.  This algorithm runs 
somewhat more slowly, but 
performs better.



Why do we expect so much from MLE?

This is easiest to explain in the 2D case.  The iteration to improve a 2D reconstruction 

(like a class average) is computed as 
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Thus the average image A is obtained as a weighted average of transformed data images, 

with the weights being an exponential function of the cross-correlation. 

 

 

 

The advantage of this is that there is less reference bias, and also separate populations can 

be more accurately estimated. 

Why do we expect so much from MLE?

This means that in situations where, at low SNR, conventional alignment shows 
reference bias...



Why do we expect so much from MLE?

...ML estimation shows much less reference bias.  This comes from the fact that hard 
assignments of alignment parameters are not made.

Speeding up the 2D EM algorithm

H. Tagare



Observations

Adaptive Integration



First results of adaptive integration

SNR= -17db

Projections from random directions
   in 5 deg. cones around x,y,z axis

24 images/mean

10 EM iterations

Speed gain: X 20~30

Fourier shell energy indistinguishable from exact EM.

Extensions are limited only by the imagination

...and computation time!

The likelihood framework allows much flexibility 
in defining models. 

 For example, a hidden variable could be the 
angle of a rigid-body motion.  The model would 
contain parameters say for the mean angle and 
its S.D. of random variation.  The EM algorithm 
can handle this, and in principle can provide a 
“sharp” structure, along with a description of the 
motion.

The EM algorithm 

 
The general problem is formulated this way. 

 

x = x1, x2 ...xN{ }  is the set of observed data; 

z = z
1
, z
2
,...z

M{ }  is a set of hidden variables. 

  

Suppose it’s easy to compute the probability p(x,z |!)  of the complete data 

set x
1
, x

2
...x

N
, z
1
, z
2
...z

M{ } . 

 
By doing an integral over all values of the z’s we can get the log likelihood: 

 

L = ln p(x,z |!)"  p(z | x,!) dz  

 
 

Our problem 

 

x = x
1
, x

2
...x

N{ }  is the set of images; 

z = z1, z2 ,...zM{ }  is the set of alignment parameters (Euler angles and 

translations) for each image. 
  

It is easy to compute the probability p(x,z |!)  of the images, with the 

alignment parameters known. 

 
In the end we don’t care about the alignment parameters, and just integrate 

them out: 

 

L = ln p(x,z |!)"  p(z | x,!) dz  

 

 

One way to increase the likelihood is to use the Expectation Maximization 
algorithm, which has two conceptual steps. 

 

1.  Given a previous estimate of the model parameters !(old)
, 

compute the expectation 

 

Q(!) = ln p(x,z |!)p(z | x,!(old)

" )dz  

 
2.  Maximize each parameter of the model by solving 

 

!Q("
(new)
)

!L
= 0  

 

 



Concluding remarks

1.  Everything gets harder at low SNR or high ambiguity: EM convergence is 
slower, and the quality of the noise model becomes more important.

2.  The EM algorithm is guaranteed only to find a local maximum.

3.  MLE is asymptotically optimal: in the limit of infinite data it should 
provide correct estimates even with low-quality data.  However, the 
required amount of data grows very rapidly as SNR decreases.

4.  MLE does not solve all problems.
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