Monolayer Purification for Single Particle EM

Debbie Kelly Walz Laboratory Department of Cell Biology Harvard Medical School kelly@crystal.harvard.edu

Historical Background

- Uzgiris and Kornberg (1983) 2D xtals of Ab on lipid Antigen
- Darst et al., 1988 RNA polymerase
- Avila-Sakar et al., 1994 50s ribosome subunit
- Kubalek et al., (1994)
 His-tagged HIV1 RT

Dietrich and Venien-Bryan (20

Monolayer Structures

290 projection maps

15 Cryo-EM

Only 7 Cryo-EM

3D Reconstructions

Current Specimen Limitations

- Screening conditions
- Fragile transfer step
- Specimen Flatness
- Alternative approach = Single particle EM

A combinatorial approach for protein purification / EM structural studies

- Develop the Ni-NTA monolayer technique as a novel purification method
- Single Particle Cryo-EM for 3D reconstruction
- Apply the methodology to a real system

Monolayer Purification Setup

1) Add protein sample well Cell lysate w/ target (25 µl) 50mM Hepes+150 mM NaCl+imidazole

2) Cast monolayer

Filler / Ni-NTA lipid (1mg/ml
in CHCl₃)
Apply 1µl Mix w/ Hamilton
syringe
Incubate 15 - 30 min., 4°C
3) Sample with EM
grid

Apply clean EM grid Grid bar side on monolayer

Basic Considerations

- Biological sample preparation
- Grid preparation
- Transfer Step
- Neg. stain screening
- Vitrification
- Low-dose Imaging

Preparation of Cell Extracts

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Insect cells (Sf9)

Bacteria Mammalian cells (E.coli, BL21) (293T)

- Grow His-tagged construct
- Lyse cells with lysozyme, sonication
- Obtained cleared lysate; ML input

Quantifoil Grid Preparation

Whatman #1 paper Saturated w/ Ethyl Acetate o/n in hood

Bake for 1 hr At least 100°C

Transfer Methods

Direct Transfer vs. Loop transfer

7Å Projection Map of SbpA

Norville et al., JSB (in

Transfer of 2D crystal vs Single particles

- Crystals = Loop transfer / 5% Trehalose embedding /ethane
- Particles = Direct transfer /ethane

Basic Considerations

- Biological sample preparation
- Grid preparation
- Transfer Step
 Neg. stain screening
- Vitrification
- Low-dose Imaging

Negative Stain Screening Test specimen: Tf-TfR complex

Transferrin-Transferr Receptor Complex

Negative Stain Screening

Screening Monolayer Purified Tf-TfR complex from Sf9 extracts

In Soln.

2% ML

2% ML + 50 mM Imid.

Neg. stain reconstruction using RCT

Vitrification of ML specimens

- Place "Grid bar" on top of ML
- Remove grid w/ forceps
- Blot 3µl subphase

 Plunge into ethane

Manual vs. Automated Freezing

• Manual

- Vitrobot (F
- Uncontrolled Environment (22
 - Environment (22°C, 65% rh)

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

- Calibrate blotting
- Blotting time \propto volume (µl)
- Consistent ice over entire grid
 - Gradient of vitreous ice

Low-dose imaging

- Tecnai F-20 operating at 200 kV
- Quantifoil 2/1 (2 μm holes, 1 μm spacing)
- Magnification = 50,000x
- Defocus = -2 to -5 μ m
- 10 e⁻ / $Å^2$, 1 sec exposure
- Images on Film, scanned w/ 7μm step (1.4 Å / pixel, 3 x 3 sub-sampling)

Imaging Monolayer Purified Tf-TfR from Sf9 extracts

In Soln.

2% ML

20% ML

Leginon for Screening ML Cryo-EM specimen

Taylor et al., JSB (in press)

Hole selection based on radial density function

High-throughput Potential

Current interests

• Adapt ML method for use with membrane proteins and other tags

 3D reconstructions of native complexes
 large data sets and automated routines

Acknowledgements

Danijela Dukovski
 Tom Walz
 Dept. of Cell
 Biology
 Harvard Medical
 School