From x-ray crystallography to electron microscopy and back -- how best to exploit the continuum of structure-determination methods now available

Scripps EM course, November 14, 2007

What aspects of contemporary x-ray crystallography have made it a particularly powerful tool in structural biology?

•Molecular replacement: the body of pre-existing structural knowledge simplifies a new structure determination

•Density modification: elimination of noise by imposition of "reality criteria" in direct space

•Refinement: constraints enable you to incorporate chemical "reality criteria"

- 1. Phasing x-ray data from EM (TBSV; reovirus core)
- 2. Phasing electron diffraction data from coordinates derived from x-ray crystallography (aquaporin)
- 3. Docking an x-ray structure into an EM map (clathrin coat)
- 4. Lessons from x-ray crystallography for single-particle EM

X-ray crystallographic structure determination

1. Experimental phases \rightarrow map \rightarrow (modified map) \rightarrow build model

Experimental phases are poor; density modification is useful whenever possible.

Building rarely produces complete or fully correct model: model \rightarrow refine \rightarrow rephase \rightarrow rebuild and extend model \rightarrow refine \rightarrow (cycle)

2. MR phases \rightarrow map and MR model \rightarrow rebuild or extend model \rightarrow refine \rightarrow (cycle)

Map is strongly biased, so it is *much* better to modify map based on solvent flattening or ncs, then continue with rebuilding and extending Examples: phases from EM map as MR "model", density modification from non-crystallographic symmetry (icosahedral: 5-fold in these two cases)

TBSV: negative stain, 30 Å (1974) Reovirus: cryo, 30 Å (2000) J. Mol. Biol. (1975) 97, 163-172

Structure of Tomato Bushy Stunt Virus

II.[†] Comparison of Results Obtained by Electron Microscopy and X-ray Diffraction

A. JACK[‡], S. C. HARRISON

Gibbs Laboratory, Harvard University 12 Oxford Street, Cambridge, Mass. 02138, U.S.A.

AND R. A. CROWTHER

Medical Research Council Laboratory of Molecular Biology Hills Road, Cambridge CB2 2QH, England

A three-dimensional reconstruction from electron micrographs of tomato bushy stunt virus has been used to determine X-ray phases to 28 Å resolution, by analogy with the single isomorphous replacement method of protein erystallography. An electron density map computed from X-ray amplitudes and these phases differs in two important respects from the electron micrograph reconstruction. The exclusion of stain from the 5-fold vertices, previously attributed to the presence of a minor protein, is shown to be an artifact of staining. The other difference involves positive staining of the RNA at the quasi-3-fold positions.

Virion

ISVP

infectious or intermediate subviral particle

Core

Dryden, Baker et al. (1993).

Crystals of reovirus cores

F432, a= 1255 Å Initial phases to 30 Å from modified EM density Phase extension by averaging

Map \rightarrow Mask, average, and reconstitute \rightarrow SFs

F's and ϕ 's

Works because true a.u. is smaller than crystallographic a.u., transform is effectively oversampled Non-cryst. symmetry averaging and solvent flattening

Aquaporin-0 (AQP0):

Molecular replacement with MOLREP, monomer as model Must refine unit cell (grid search)

Refinement with CNS

- 1. Rigid body with unit-cell variation
- 2. Simulated annealing; rebuild from 2Fo-Fc with solvent flipping maps and SA omit maps to correct

Gonen et al, 2004

Aquaporin-0

 $D \cap$

Two-dimensional crystals p422 Layer group Unit cell (Å) a = b = 65.5Thickness (assumed) (Å) 160 Electron diffraction 286 (0°, 11; 20°, 43; 45°, Number of patterns merged 107; 60°, 87; 70°, 38) Resolution limit for merging (Å) 1.7 $R_{\text{Eriedel}}(\%)$ 14.25 R_{merge} (%) 16.60 Observed amplitudes to 1.9 Å 126.980 Unique reflections 22.293 713 Maximum tilt angle (*) 80.0% (70.5% at 2.0-1.9 Å) Fourier space sampled 5.7 (2.5 at 2.0-1.9 Å) Multiplicity. Crystallographic refinement (5.0-1.9 Å) Resolution limit for refinement (Å) 1.9 Crystallographic *R* factor (%) 25.81 Free R factor (%) 29.93 Reflections in working/test set 14,600/1,580 Non-hydrogen protein atoms 1.784 Non-hydrogen lipid atoms 348 Solvent molecules 76 Average protein 8 factor (Å²) 48.4 97.5; 2.5; 0 (allowed; Ramachandran plot (%) generous; disallowed)

Docking a model from x-ray crystallography (or NMR) into a cryoEM density

Two key resolution barriers: ~ 8-9 Å and ~ 4 Å

Rigid-body refinement vs. more flexible refinement

Transferrin/TfReceptor

Cheng et al (2004) Cell 116:565-576.

Molecular replacement:

1. Can a molecular model work as an initial reference for single-particle alignment, with appropriate filtering of spatial frequencies?

2. How can we best exploit molecular replacement in 2-D crystallography?

Clathrin coat

- 1. Density modification
- 2. ncs symmetry averaging

Fotin et al, 2004

Anatomy of a clathrin coat

Clathrin lattice

Triskelion = 3 x (Heavy Chain + Light Chain)

QuickTime[™] and a Cinepak decompressor are needed to see this picture.

D6 barrel

Musacchio, Smith, Grigorieff, Pearse, Kirchhausen

X-ray structure of clathrin fragments

terHaar et al, 1998

Comparison of EM and X-ray densities at 7.9 Å

Clathrin CHCR domain organization

Modeling structure of the whole leg

The helical tripod

			•	•	•	•	•	•	•	•
BT	1591	IMDFAMPYFI	QVMKEYLT	KVD <mark>K</mark> LDAS <mark>B</mark>	SLRKEEEQA	TETQPIVYGÇ	2 <mark>P</mark> QLMLTAGP	SVAVPPQAPFGYG	Y T A P A Y <mark>G</mark> Q	PQPGFGYSM
HS	1591	IMDFAMPYF1	QVMKEYLT	KVD <mark>K</mark> LDAS <mark>B</mark>	SLRKEEEQA	TETQPIVYGÇ	2 <mark>P</mark> QLMLTAGP	SVAVPPQAPFGYG	Y T A P P Y <mark>G</mark> Q	PQPGFGYSM
DM	1592	IVDFAMPYLI	QVLREYTT	KVD <mark>K</mark> LELN <mark>E</mark>	AQREKEDDS	TEHKNIIQME	2 <mark>P</mark> QLMITAGP	AMGIPPQYAQNYP	P G A A <mark>T V</mark> T A A <mark>G</mark> G	RNMGYPYL.
SC	1597	LEDYIKPFEI	SIKKEQND	SIK <mark>K</mark> IT <mark>B</mark>	ELAKKSGSN	EEHKDGÇ	PLMLMNS	AMNVQPTGF		

Two questions:

- 1. Can we improve a reconstruction by use of a model built into the density as reference?
- 2. Can we refine a model against the observed data (projected images)?

In crystallography, measured amplitudes are, by experimental arrangement, coming from an averaged structure.

In single-particle EM, measured projections contain unique "noise" that will disturb estimate of projection parameters X-ray: observations are amplitudes; refine model parameters against these observations, using chemistry as a constraint.

If the model is incomplete, use refinement to improve phases, get better map, extend model.

 $\begin{array}{ccc} \text{refine} & \text{F.T.} & \text{build} \\ \textbf{Model} \rightarrow \textbf{Model'} \rightarrow \textbf{Suitable map} \rightarrow \textbf{Model''} \\ \swarrow \end{array}$

Refinement minimizes:

$$R = \frac{\sum ||F_i^{calc}(h;x)| - |F_i^{obs}(h)||^2}{\sum |F_i^{obs}(h)|^2}$$

EM: observations are projections; what parameters should be refined?

Do we have enough power to refine against the following agreement factor?

$$\mathsf{R} = \frac{\sum |\sigma_i^{\text{calc}}(\mathbf{u}, \mathbf{v}; \mathbf{x}, \mathbf{\theta}_i) - \sigma_i^{\text{obs}}(\mathbf{u}, \mathbf{v})|^2}{\sum |\sigma_i^{\text{obs}}(\mathbf{u}, \mathbf{v})|^2}$$

where σ_i^{calc} is the calculated projection, as a function of x, the model coordinates (and B's), and of θ_i , the orientation and origin of the ith projection

If not, what is a suitable compromise?

Would hope to have the following cycle:

refine build reconst Model \rightarrow Model' \rightarrow Suitable map \rightarrow Model"

Karin Reinisch Tamir Gonen Yifan Cheng Piotr Sliz Alex Fotin

Tom Walz Niko Grigorieff

Tom Kirchhausen

David DeRosier

X-ray: observations are amplitudes; refine model parameters against these observations, using chemistry as a constraint.

If the model is incomplete, use refinement to improve phases, get better map, extend model.

 $\begin{array}{ccc} \text{refine} & \text{F.T.} & \text{build} \\ \textbf{Model} \rightarrow \textbf{Model'} \rightarrow \textbf{Suitable map} \rightarrow \textbf{Model''} \\ \swarrow \end{array}$

Refinement minimizes:

$$R = \frac{\sum ||F_i^{calc}(h;x)| - |F_i^{obs}(h)||^2}{\sum |F_i^{obs}(h)|^2}$$