
Conformational Variability –
Experience with Ribosomes



Exploration of reconstruction strategy
“High-resolution project”

Use small dataset (50,000) to optimize processing, with the idea to switch to 
larger dataset (130,000)

Parameters of image processing:
• Sampling (switch from coarse to fine)
• Window size (to avoid CTF effects)
• Angular spacing
• Amplitude correction in each step of refinement vs. at the very end

Final parameters: 
angular step 0.5 degrees, 
angular search range 2 degrees
7 iterations of refinement: 920 hours on a 48-node cluster
Regular window size OK
Sampling (decimation) can be switched mid-way from coarse to fine



Resolution measurement issues

• Apply soft mask to reconstruction to get true resolution!
• Evidence for dependence of resolution R vs. log(N)
• Is lin-log dependence general?
• Is it allowed to extrapolate from half to full dataset?



“Clutter”
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6.7 Å (LeBarron et al., in prep.)            10 Å (Valle et al., NSB 2003)



Cryo-EM               X-ray                  Cryo-EM                      X-ray



Definition of EF-Tu domains
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Dynamics of Translation
• We draw inferences about 

movements by comparing EM 
maps in different states.  

• To what extent are such 
inferences supported by other 
data?

• L1 stalk move X-ray
• Small subunit head rotation 

X-ray
• Ratchet motion in translocation 

smFRET
• tRNA selection smFRET

L1



Ratchet motion induced by EF-G binding

• Cryo-EM: (1) differences between conformations in two 
different states

(2) evidence of conformational variability  -- coexistence 
of different conformations in the specimen (blurring, 3D 
variance) 

• Hydroxyl radical probing: changes of Pb2+ – induced 
rRNA cleavage pattern along elongation cycle (Polacek
et al., 2000)

• Bulk FRET (Ermolenko et al., 2006)
• Single-molecule FRET (Cornish et al., 2007)



EF-G/eEF2 binding induces ratcheting of the small 
subunit

70S-EF-G

Agrawal et al. (1999) Nat. Str. Biol. 6:643-7 and Valle et al. (2003) Cell 114: 123-134



“Induced fit” – both ribosome 
and EF-G undergo structural 
changes, such that a match 
of binding sites is achieved

X-ray structure of EF-G•GDP

X-ray structure of EF-G•GDP, 
domains III, IV, V rotated



What is the Purpose of the Ratchet Motion in mRNAWhat is the Purpose of the Ratchet Motion in mRNA--tRNAtRNA
Translocation?  Translocation?  

Mechanism of Mechanism of mRNA translocationmRNA translocation on the small subunit, in two partson the small subunit, in two parts

Translocation, Step I:
mRNA moves along 
with 30S, relative to 50S
(lock is closed)

Translocation, Step II:
30S moves back, 
relative to mRNA and 50S
(lock is open)



Modularity of the Machine: Macro-state II is trapped by 
several factors in entirely different functional contexts.

Common mechanism for activating GTPase mechanism? 

70S 70S•IF2•GDPNP 70S•RRF70S•RF3•GDPNP70S•EF-G•GDPNP

Gabashvili et al., 2000 Allen et al., 2005       Valle et al., 2003        H. Gao et al., subm.     N. Gao et al., 2005
Frank & Agrawal, 2000



Atomic models of the ratcheting ribosome, upon binding of EF-G (Valle et al.  
Cell 2003), obtained by real-space refinement (Gao et al., unpublished).
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Ratchet motions triggered by EF-G and RF3 are 
virtually indistinguishable

EF-G                                                               RF3



Evidence for Conformational Changes: Evidence for Conformational Changes: 
PbPb2+2+ induced induced rRNArRNA cleavage pattern near the cleavage pattern near the peptidylpeptidyl--transferasetransferase center undergoes periodic center undergoes periodic 

changes during the elongation cyclechanges during the elongation cycle

Polacek et al., Molecular Cell 6 (2000) 159-171

◄



Ermolenko et al., 2007





Ratchet motion is necessary for 
translocation: experimental findings

Horan & Noller (2007), PNAS

L2 – S6
cross-link
Inhibits
translocation



“Macro-States” of the Ribosome
• The ribosome possesses two “macro-states” (I and II) with distinct 

conformations that differ by a change in the angle between the subunits 
(“ratchet motion”)

• Along with the change in intersubunit angle, a structural reorganization 
takes place in both subunits, which affects the properties of several sites on 
both subunits. 

• Although one of the states is preferred, the two macro-states have similar 
stability, and they appear to be separated by a very small energy barrier (no 
GTP hydrolysis required to go from one to the other). 

• This transition is instrumental to translocation (recent Noller results), but it 
will not take place unless the P-site tRNA is deacylated (Zavialov et al., 
2003; Valle et al., 2003)

• Binding of a variety of factors (at the same ribosomal site) temporarily 
stabilizes state II: EF-G (translocation), IF2 (initiation), RF3 (termination), 
RRF (recycling).

• Spontaneous ratcheting (along with transition to P/E state) has been 
observed by Harry Noller.



Ratchet motion: example for heterogeneity
(one of the many)

• Two populations co-exist: 
(1) non-ratchet + A,P,E  (2) ratchet + P/E + EF-G

• Need for classification
• Supervised classification: need to know what we are looking for
• Unsupervised (preferable): no or minimal prior knowledge

1) “Maximum likelihood” (S. Scheres et al., 2007)
2) Cluster tracking (Jie Fu & J. Frank, 2006)
3) Mirek Kalinowski’s/Gabor Herman’s approach of graph cutting 
(Kalinowski et al., Ultramicroscopy 2007)



Observation of hybrid state (stabilized by 
EF-G•GDPNP and ratchet motion) by cryo-EM

E/E P/P A/A                                                     P/E    EF-G

Non-ratcheted                                                       Ratcheted



Digression:Digression: Passage of Passage of tRNAtRNA through the ribosome: through the ribosome: 
canonical and hybrid statescanonical and hybrid states

tRNA proceeds “one step at the time”:

A/T A/A A/P P/P P/E E/E
Nomenclature: [position on small subunit] / [position on large subunit]

E   P   A

E  P  A

T

T bound with EF-Tu
A aminoacyl
P peptidyl
E exit

50S

30S
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tRNA observed in cryo-EM maps

Pre-accommodated Accommodated Translocated



Supervised Classification

• Use ribosome maps in both ratchet states but without ligands: 
• Successful classification will show tRNAs and EF-G at the expected 

locations in the two classes.



Supervised vs. Unsupervised (Maximum Likelihood) Classification of
90,000 Ribosome Images (+/- EF-G•GDPNP)

11,415 particles
in common

Scheres et al., Nature Methods 2007



Cluster tracking method: cluster continuity is a 
consequence of data overlap in Fourier space

Jie Fu and J. Frank, 2007



Cluster tracking

Strategy:
classify data first into orientations 
on angular grid, 

then classify all data falling in 
narrow angular neighborhoods.

Slide angular neighborhoods along 
the (half-) globe

Track clusters as you go along



SNR=0.1

SNR=0.1



90,000 particles: angular distribution

(tile #)Color code for # of particles
per tile



Phantom data – main variation due to orientation is in factors 1 vs 2





Factors should
not be sensitive to 
orientation
(successive exclusion)



Cluster tracking

• Problem of discontinuity of angular distribution
• Solution: (a) collect more data

(b) use CCCL (cross-correlation of common lines) 
between clusters established on each “island”.



P/E tRNA model by MD simulation and CC 
with cryo-EM

Search for representative structures along MD simulation trajectory for free tRNA



P/E cryo

(b + c)

(b + e)

(b + g)

X-ray of P-tRNA

tRNA unbound

X-ray of tRNAIle

with synthetase



Conformation of observed P/E-tRNA is visited in MD 
simulations of free tRNA (Wen Li and J. Frank, subm.)

RMSD with respect to candidate structure with high cross-correlation



tRNA Selection and Accommodation: Cryo-EM 
3D Snapshots in three States

Post-initiation                              “A/T” “A”
(post-translocation)        Phe-tRNAPhe•EF-Tu•GDP•kir

Valle et al., NSMB 10 (2003) 899



The initial approach of aa-tRNA presents a steric problem

3’5’

EF-Tu

A

A/T

CCA

CCA

mRNA



Phe-tRNAPhe in  A/T state: interaction with ribosome is 
accompanied by a distortion in the anticodon stem

Valle et al., NSB 2003



Valle et al., NSB 10 (2003) 899

A/T conformation: the tRNA is in a high-energy state.
A/T A: relaxation of a molecular spring

X-ray                                      remodeled to fit



Valle et al., NSB 11 (2003) 899



Are the dynamic features of tRNA
selection universal?

• Phe-tRNA -- existing results: Valle et al. Cell 2003
• Leu-tRNA – Wen Li et al.: collab. with Mans Ehrenberg 

and Suparna Sanyal
• Trp-tRNA – Xabier Agirrazabala et al.: collab. with 

Rachel Green (Hirsh suppressor wild-type)



Aminoacyl-tRNA selection

Phe Trp Leu

codon UUU GGU
GUC

AAA
CCA

CAG

anticodon

amino 
acid



Aminoacyl-tRNA sequences
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tRNA

TrpPhe Leu

Class I tRNA Class II tRNA



Three types of aminoacyl-tRNAs in pre-
accommodated ribosome complexes

Phe-tRNAPhe        Trp-tRNATrp         Leu-tRNALeu

10.5 Å 9 Å 12 Å

Three different aminoacyl-tRNAs in pre-accommodated 
complexes



All three aa-tRNAs in  A/T state show a 
distortion (kink and twist) in the selection step

TrpPhe Leu

GAC

S12
H69

EF-Tu

tRNA

Models from real-space refinement -- 4 rigid pieces for Phe and Trp/ 5 rigid pieces for Leu

GTP-associated Ctr.



In all three aa-tRNA investigated, ribosomal contacts are the same --
selection occurs solely on the basis of codon-anticodon interaction 

[contact of variable loop of tRNAleu with h34 is weak]

TrpPhe Leu

codon

GTPase-associated Ctr.

S12

H69
h34 codon

S12

H69
h34

codon

S12

H69
h34

A1051
in h34



Three aa-tRNA in  A/T state -- same 
ribosome binding sites

GTPase-associated 
Center

S12

H69

EF-Tu

tRNA

Trp

Phe

Leu



Distortion of the anticodon stem loop, apparently 
instrumental for tRNA selection, kinetic proofreading, and 

accommodation

• Cryo-EM findings 
[Valle et al., EMBO J. 2002; Stark et al., NSMB 2002; Valle et al., CELL 2003]

• tRNA mutations affecting translation fidelity – “waggle hypothesis”
[Yarus and Smith, “Transfer RNA” (Eds Soll & RajBhandary) pp. 443-469 (1995)]

• Normal mode analysis of free tRNA produces deformation close to 
A/T conformation
[Bahar and Jernigan, J. Mol. Biol. 281 (1998) 871]

• Aaron Klug’s initial predictions of instability in the anticodon arm, 
based on X-ray structure 
[Robertus et al., Nature 250 (1974) 546; Nucl Acid Res. 1 (1974) 927]

□



Contributors (tRNA A/T)

Wen Li
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Jayati Sengupa (GDPNP complex)
Joachim Frank
HHMI, Wadsworth Center
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